Прямоугольный треугольник, свойства, признаки и формулы

4. планиметрия
                                читать 0 мин.

Признаки равенства прямоугольных треугольников

II. По катету и гипотенузе

III. По гипотенузе и острому углу

IV. По катету и острому углу

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ
, несмотря на то, что имеют по одному одинаковому острому углу

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ
, несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы В обоих треугольниках катет был прилежащим, или в обоих — противолежащим
.

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников? Загляни в тему «Треугольник» и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны. А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов

Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Формулы и свойства прямоугольного треугольника

Обозначения формул:

(см. рисунок выше)

a, b
— катеты прямоугольного треугольника

c
— гипотенуза

α, β
— острые углы треугольника

S
— площадь

h
— высота, опущенная из вершины прямого угла на гипотенузу

m a
a
из противолежащего угла (α
)

m b
— медиана, проведенная к стороне b
из противолежащего угла (β
)

m c
— медиана, проведенная к стороне c
из противолежащего угла (γ
)

В прямоугольном треугольнике
любой из катетов меньше гипотенузы
(Формулы 1 и 2). Данное свойство является следствием теоремы Пифагора .

Косинус любого из острых углов
меньше единицы (Формулы 3 и 4). Данное свойство следует из предыдущего. Так как любой из катетов меньше гипотенузы, то из соотношение катета к гипотенузе всегда меньше единицы.

Квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора). (Формула 5). Это свойство постоянно используется при решении задач.

Площадь прямоугольного треугольника
равна половине произведения катетов (Формула 6)

Сумма квадратов медиан
к катетам, равна пяти квадратам медианы к гипотенузе и пяти квадратам гипотенузы, деленных на четыре (Формула 7). Кроме указанной, есть еще 5 формул
, поэтому рекомендуется ознакомиться также и с уроком «Медиана прямоугольного треугольника «, в котором более подробно изложены свойства медианы.

Высота
прямоугольного треугольника равна произведению катетов, деленному на гипотенузу (Формула 8)

Квадраты катетов обратно пропорциональны квадрату высоты, опущенной на гипотенузу (Формула 9). Данное тождество также является одним из следствий теоремы Пифагора.

Длина гипотенузы
равна диаметру (двум радиусам) описанной окружности (Формула 10). Гипотенуза прямоугольного треугольника является диаметром описанной окружности
. Это свойство часто используется при решении задач.

Радиус вписанной
в прямоугольный треугольник
окружности
можно найти как половину от выражения, включающего в себя сумму катетов этого треугольника минус длину гипотенузы. Или как произведение катетов, деленное на сумму всех сторон (периметр) данного треугольника. (Формула 11) Синус угла отношению противолежащего
данному углу катета к гипотенузе
(по определению синуса). (Формула 12). Данное свойство используется при решении задач. Зная величины сторон, можно найти угол, который они образуют.

Косинус угла А (α, альфа) в прямоугольном треугольнике будет равен отношению
прилежащего
данному углу катета к гипотенузе
(по определению синуса). (Формула 13)

Свойство: 1.
В любом прямоугольном треугольнике, высота, опущенная из прямого угла(на гипотенузу), делит прямоугольный треугольник, на три подобных треугольника.

Свойство: 2.
Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу(или среднему геометрическому тех отрезков на которые высота разбивает гипотенузу).

Свойство: 3.
Катет равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу.

Свойство: 4.
Катет против угла в 30 градусов равен половине гипотенузы.

Формула 1.

Формула 2.
, где гипотенуза; , катеты.

Свойство: 5.
В прямоугольном треугольнике медиана проведенная к гипотенузе, равна ее половине и равна радиусу описанной окружности.

Свойство: 6. Зависимость между сторонами и углами прямоугольного треугольника:

44. Теорема косинусов. Следствия: связь между диагоналями и сторонами параллелограмма; определение вида треугольника; формула для вычисления длины медианы треугольника; вычисление косинуса угла треугольника.

Конец работы —

Эта тема принадлежит разделу:

Класс. Программа коллоквиума основы планиметрии

Свойство смежных углов.. определение два угла смежные если одна сторона у них общая в две другие образуют прямую линию..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Теорема Пифагора

Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок — освежай знания

Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.

Видишь, как хитро мы поделили его стороны на отрезки длин и!

А теперь соединим отмеченные точки

Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата?

Правильно, .

А площадь меньшего?

Конечно, .

Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами.

Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.

Давай теперь соберем всё вместе.

Преобразуем:

Вот и побывали мы Пифагором — доказали его теорему древним способом.

Медиана в прямоугольном треугольнике

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Проведём диагональ и рассмотрим точку точку пересечения диагоналей. Что известно про диагонали прямоугольника?

  • Точкой пересечения диагонали делятся пополам Диагонали равны

И что из этого следует?

Вот и получилось, что

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку

Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это — ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

Прямоугольный треугольник — коротко о главном

  • \( \displaystyle a,\text{ }b\) — катеты
  • \( \displaystyle c\) — гипотенуза
  • В прямоугольном треугольнике гипотенуза всегда больше любого из катетов.

Теорема Пифагора

Признаки равенства прямоугольных треугольников:

  • по двум катетам: \( \displaystyle a={{a}_{1}},\ b={{b}_{1}}\)
  • по катету и гипотенузе: \( \displaystyle a={{a}_{1}},\ c={{c}_{1}}\) или \( \displaystyle b={{b}_{1}},\ c={{c}_{1}}\)
  • по катету и прилежащему острому углу: \( \displaystyle a={{a}_{1}},\) \( \displaystyle \angle \beta =\angle {{\beta }_{1}}\) или \( \displaystyle b={{b}_{1}},\) \( \displaystyle \angle \alpha =\ \angle {{\alpha }_{1}}\)
  • по катету и противолежащему острому углу: \( \displaystyle a={{a}_{1}},\) \( \displaystyle \angle \alpha =\ \angle {{\alpha }_{1}}\) или \( \displaystyle b={{b}_{1}},\) \( \displaystyle \angle \beta =\angle {{\beta }_{1}}\)
  • по гипотенузе и остром углу: \( \displaystyle c={{c}_{1}},\) \( \displaystyle \angle \alpha =\ \angle {{\alpha }_{1}}\) или \( \displaystyle c={{c}_{1}},\) \( \displaystyle \angle \beta =\angle {{\beta }_{1}}\).

Признаки подобия прямоугольных треугольников:

  • одному острому углу: \( \displaystyle \ \alpha =\ {{\alpha }_{1}}\) или \( \displaystyle \angle \beta =\angle {{\beta }_{1}}\)
  • из пропорциональности двух катетов: \( \displaystyle \frac{a}{{{a}_{1}}}=\frac{b}{{{b}_{1}}}\)
  • из пропорциональности катета и гипотенузы: \( \displaystyle \frac{a}{{{a}_{1}}}=\frac{c}{{{c}_{1}}}\) или \( \displaystyle \frac{b}{{{b}_{1}}}=\frac{c}{{{c}_{1}}}\).

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике:

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе: \( \displaystyle \sin \ \alpha =\frac{a}{c},\ \ \sin \ \beta =\frac{b}{c}\)
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе: \( \displaystyle \cos \ \alpha =\frac{b}{c},\ \ \cos \ \beta =\frac{a}{c}\)
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему: \( \displaystyle tg\alpha =\frac{a}{b},\ \ tg\beta =\frac{b}{a}\)
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: \( \displaystyle ctg\alpha =\frac{b}{a},\ \ ctg\beta =\frac{a}{b}\).

Высота прямоугольного треугольника

  • Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника.
  • Каждый из этих треугольников подобен исходному: \( \displaystyle \Delta BEC\sim \Delta AEC\sim \Delta ABC\)
  • Высота прямоугольного треугольника: \( \displaystyle h=\frac{ab}{c}\) или \( \displaystyle h=\sqrt{BE\cdot EA}\).

Медиана и описанная окружность

  • В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: \( \displaystyle m=\frac{c}{2}\).
  • Центр описанной окружности совпадает с серединой гипотенузы (точка О).
  • Радиус описанной окружности: \( \displaystyle R=\frac{c}{2}={{m}_{c}}\).

Вписанная окружность

Радиус вписанной в прямоугольный треугольник окружности:

Площадь прямоугольного треугольника:

Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: