Тригонометрия: таблица косинусов, синусов, тангенсов и катангенсов

Калькулятор и таблица для вычисления синуса и косинуса.

Определение значения синуса, косинуса, тангенса и котангенса

Определение

Тригонометрия — это техническая часть математики, в которой представлены особенности взаимосвязи между сторонами и углами треугольников.

Тригонометрические функции, является очень важной составляющей не только математики, но других технических наук. Применяя основные формулы и законы тригонометрии при вычислении задач

Огромное значение имеют таблицы значений данных функций. Они существенно упрощают решение задач различной сложности.  

Применяя основные формулы и законы тригонометрии при вычислении задач. Огромное значение имеют таблицы значений данных функций. Они существенно упрощают решение задач различной сложности.  

Процесс работы и расчета функций данного вида, очень непростой. Решение задач и уравнение, очень часто вызывают сложности. Поэтому, со временем, были созданы и разработаны несколько видов решений, чтобы облегчить жизнь математика и всем представителям технических наук. Преобразовывая тригонометрические формулы, необходимо руководствоваться следующими правилами:

  1. Нельзя продумывать весь процесс решения от начала до самого конца сразу. Нужно определиться с основными задачами и данными.
  2. Весь пример, подвергать упрощению или преобразования постепенно;
  3. Разрешается применять все преобразования и действия, связанные с алгеброй, а именно: вынести значение за пределы скобок. сократить значение и многое другое:

\

Зная основные определения тригонометрических функций, можно определить их угловые значения. Для углов от нуля до трехсот шестидесяти градусов, вычислим данные и запишем их в виде таблицы.

Значения вышеупомянутых математических функций, в частности в разделе геометрия, вычисляются как соотношения длин прямоугольного треугольника.

Углы геометрической фигуры имеют соответствующие значения в градусах. Используя основные определения математики, а именно тригонометрии можно определить нужные нам данные.

Определим основные значения

1.синуса (sin):

2. косинуса (cos):

3. тангенса(tg):


\

Данные выше угловые значения, не определяются, согласно основным законам геометрии и математики.

4. котангенса (ctg)

\

Для перечисленных выше угловых значений по законам математики и всех технических наук в целом, значения не определяются

Мы произвели основные расчеты. Определили результаты угловых значений.

Мы определились с основными угловыми значениями функций. Следующим шагом будет их сведение в таблицу.

Таблица1.  Основные значения функций косинус, синус, тангенс и котангенс, для угловых значений и радиан

Продолжение таблицы 1

Продолжение таблицы 1

Вычисленные значения принято сводить в таблицу, показанную выше. Особенно рекомендуются, ее заучивать наизусть, для более лучшего восприятия. Рассмотрим, также значения для нестандартных угловых значений и сведем их в таблицу.

Таблица 2. Нестандартные углы функций косинус, синус, тангенс и котангенс в тригонометрии

В данной таблице приведены значения углов, которые считаются нестандартными, также таблица необходима, чтобы облегчить жизнь, в первую очередь, школьной программе.

Например:

Значение заданной функции берется из таблицы. Оно равняется данному, которое попадает на пересечение столбца и строки.

Пример №1.  Необходимо определить чему равен \

Берем левый столбец с наименованием функции, находим в верхней строке нужный градус, и на пересечении определяем нужный ответ.

Следовательно:\.

Пример №2. Необходимо определить чему равен \.

Берем левый столбец с наименованием функции, находим в нижней строке значение радиан, поднимается на верх таблицы и определяем градусы.

\

Пример №3. Необходимо определить чему равен \.

Проводим аналогичные действия, как в предыдущих двух примерах и определяем угловое значение.

\

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла. Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

Данные углы выбраны отнюдь не случайно. Обозначение π в таблицах стоит для радиан. Рад — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Вычисление данных при помощи фигуры — прямоугольный треугольник

Для этого строится нужный треугольник заданным углом, который необходимо определить. Строится угол, точка и луч, которые выходят из данной точки под определенным углом. Соединяем лучи, прямой линией перпендикулярной, одному из лучей. В конечном итоге получаем фигуру, угол которой равняется заданному в задаче углу. В процессе вычисления, также задаются длины сторон. Поэтому трудней с построением не должно возникнуть.  

Вычисление при помощи длин сторон треугольника происходит следующим образом:

  • обозначается катет;
  • сторона возле угла;
  • сторона напротив угла с прямым значением.

Функции могут выражаться по-разному в отношении сторон. Например, нам нужно определим значение sin 45°. Поделим имеющуюся длину значения противолежащего катета на значение длины гипотенузы. Если заданные значения длины равны 4 и 6 соответственно. Тогда, составим следующее выражение и получим sin\

Для определения значений основных функций в математике, необходимо заучить наизусть определение основных понятий, связанный с данной темой.  

В процессе решения задачи, это придется применять постоянно.

Значения косеканса и секанса определяются в обратном порядке. Для этого необходимо знать какие стороны нужно делить для определения вышеперечисленных функций.

Косеканс находится \ следовательно, нужно разделить гипотенузу на противолежащий катет. Секанс, наоборот к прилежащему катету \.

Например, для определения cosec 40°, если катет равен 5, а гипотенуза соответственно равна 8.  Нужно разделить 5/8 и получим ответ cosec 40° = 0,63.

При вычислениях всегда рекомендуется исключать значение под корнем в знаменателе, это наиболее облегчает процесс расчета.

Рассмотренная тема преобразования и расчета функций, является довольно громоздкой, на первый взгляд. Применяя для решения огромные формулы и функции можно растеряться и не сразу сообразить, как производить их расчет. Однако досконально рассмотрев и изучив каждый раздел, становится понятно, что все достаточно просто и громоздкие таблицы освоить можно быстро и легко.

Значения от 181 до 360 градусов

Таблицы Брадиса дают значения для углов от 0° до 90°. Остальные величины можно легко найти с помощью формул приведения. В этом случае угол, величину которого необходимо узнать, представляется как сумма (или разность) угла, кратного 90° и острого угла, например, для 140° это будет:

  • 90° + 50°;
  • 180° — 40°.

Формулы приведения, которые используются в этом случае, имеют вид:

  • \(\sin\;(90^\circ\;+\;a)\;=\;\cos\;a,\;\sin\;(180^\circ\;-\;\beta)\;=\;\sin\;a\);
  • \(\cos\;(90^\circ\;+\;a)\;=\;-\sin\;a,\;\cos\;(180^\circ\;-\;\beta)\;=\;-\cos\;a\);
  • \(tg\;(90^\circ\;+\;a)\;=\;-ctg\;a,\;tg\;(180^\circ\;-\;\beta)\;=\;-tg\;a\);
  • \(ctg\;(90^\circ\;+\;a)\;=\;-tg\;a,\;ctg\;(180^\circ\;-\;\beta)\;=\;-ctg\;a\).

Для примера можно провести расчет для ситуации, когда угол в 140° представлен как 90° + 50°:

  • \(\sin\;(90^\circ\;+\;50^\circ)\;=\;\cos\;50^\circ\;=\;0,6428\);
  • \(\cos\;(90^\circ\;+\;50^\circ)\;=\;-\sin\;50^\circ\;=\;-0,7660\);
  • \(tg(90^\circ+50^\circ)=-ctg50^\circ=-0,8391\);
  • \(ctg\;(90^\circ\;+\;50^\circ)\;=\;tg\;50^\circ\;=\;1,1918\).

Стандартные углы

Итак, значения $\sin \alpha $, $\cos \alpha $, $\operatorname{tg}\alpha $ и $\operatorname{ctg}\alpha $ однозначно определяются величиной угла $\alpha $. Нам не важен треугольник — важна только градусная мера угла. Можно один раз посчитать синусы, косинусы и т.д. для нужных углов, а затем просто подставлять их.

Но тут мы сталкиваемся с проблемой, из-за которой многие как раз и не понимают тригонометрию. Проблема состоит из двух пунктов:

  1. Для большинства углов $\alpha $ нельзя найти точные значения $\sin \alpha $, $\cos \alpha $, $\operatorname{tg}\alpha $.
  2. Верно и обратное: для большинства «красивых» $\sin \alpha $, $\cos \alpha $ и т.д. нельзя подобрать подходящий угол $\alpha $.

Звучит немного непонятно, поэтому разберём каждый пункт на конкретных примерах.

3.1. Три стандартных угла

Существует лишь три острых угла, для которых легко считаются синусы, косинусы и т.д. Это 30°, 45°, 60°. Вот их синусы, косинусы и тангенсы:

\

Чтобы понять, чем эти углы такие особенные, просто посчитаем все эти синусы, косинусы и тангенсы. Начнём с $\alpha =45{}^\circ $. Для этого рассмотрим равнобедренный прямоугольный треугольник. Мы уже встречались с ним:

Поскольку в равнобедренном треугольнике $\angle A=\angle B=45{}^\circ $, получим:

\

Это именно те значения, которые указаны в таблице!

Теперь разберёмся с углами $\alpha =30{}^\circ $ и $\alpha =60{}^\circ $. Здесь рассуждения будут чуть сложнее. Сначала рассмотрим равносторонний треугольник $ABC$ со стороной $AB=2$ (просто так удобнее) и проведём высоту $BH$:

Мы знаем, что высота $BH$ — ещё и медиана, и биссектриса. Поэтому $AH=CH=1$, $\angle ABH=\angle CBH=30{}^\circ $.

Следовательно, треугольник $ABH$ — прямоугольный, да ещё и с острыми углами 30° и 60°. По теореме Пифагора легко найти $BH=\sqrt{3}$. Нанесём все данные на чертёж:

Разберёмся с углом 60°:

\

И с углом 30°:

\

Попробуйте повторить все эти рассуждения самостоятельно. Это очень полезное упражнение!

Возникает вопрос: как быть с другими углами? Например, можно ли найти $\sin {50}^\circ $? Или, быть может, $\cos {10}^\circ $? Спойлер: можно, но это будут очень громоздкие выражения. И у нас пока не хватает технологий, чтобы их найти.

Поэтому идём дальше и посмотрим на ситуацию с другой стороны: как подобрать угол к заданному синусу, косинусу, тангенсу?

3.2. Что с другими углами?

Взгляните ещё раз на «классический» прямоугольный треугольник, с которого мы начинали наши рассуждения:

Катеты 4 и 3, гипотенуза 5 — вполне обычный треугольник. Для него можно посчитать, например, синус острого угла $\alpha $:

\

Итак, мы знаем синус

Внимание, вопрос: каким должен быть угол $\alpha $, чтобы $\sin \alpha =0,6$? Сколько градусов должно быть в угле $\alpha $? Ответ: неизвестно.:). Точнее, правильнее сказать, что у нас пока нет технологий, позволяющих найти такой угол $\alpha $, чтобы $\sin \alpha =0,6$

Хотя такой угол точно есть, ведь мы предъявили треугольник, в котором он присутствует

Точнее, правильнее сказать, что у нас пока нет технологий, позволяющих найти такой угол $\alpha $, чтобы $\sin \alpha =0,6$. Хотя такой угол точно есть, ведь мы предъявили треугольник, в котором он присутствует.

Из всех этих рассуждений сделаем важный вывод. В тригонометрии мы:

  • Либо берём угол и считаем для него синусы, косинусы и т.д. Но лишь для трёх острых углов — 30°, 45°, 60° — всё будет считаться быстро и красиво. Такие углы называются табличными.
  • Либо берём синус, косинус или тангенс и для него пытаемся подобрать острый угол. Но лишь для табличных значений мы сможем подобрать такие углы. И да: это будут углы 30°, 45°, 60°.

Ещё раз:

И наоборот:

С этой мыслью мы и переходим к следующему пункту — свойства тригонометрических выражений.

Что такое таблицы тригонометрических функций

Определение

Тригонометрические функции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. 

Для определения неизвестных элементов треугольника (сторон или углов), необходимо использовать известные элементы и правила зависимости между ними. Подобные зависимости называют также тригонометрическими функциями. Таким образом, зная значения некоторого угла или стороны, пользуясь тригонометрическими функциями можно найти неизвестные углы и стороны треугольника. Именно поэтому, без знаний тригонометрии решать геометрические задачи не представляется возможным.

Основные тригонометрические функции:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

  1. Синус — отношение противолежащего катета к гипотенузе.
  2. Косинус — отношение прилежащего катета к гипотенузе.
  3. Тангенс — отношение противолежащего катета к прилежащему. Также равен частному от деления синуса определенного угла на его косинус.
  4. Котангенс — отношение прилежащего катета к противолежащему. Также равен частному от деления косинуса определенного угла на его синус.

Примечание

Синус и косинус являются прямыми тригонометрическими функциями, тангенс и котангенс — производными. Существуют и другие тригонометрические функции, например — арктангенс. Арктангенс относится к так называемым обратным тригонометрическим функциям, и является функцией, обратной тангенсу. Это означает, что если тангенс некоторого угла у градусов (радиан) равен х, значит арктангенс x равняется y градусов (радиан).

Вычисленные тригонометрические функции (синус, косинус и тангенс) представляют в виде специальных таблиц, которые можно использовать при решении задач — это и есть таблицы тригонометрических функций. В них приведены значения тригонометрических функций углов от 0° до 360°.

Для прямоугольных треугольников в диапазоне углов от 30° до 90° тригонометрические функции равняются следующим значениям:

sin 30° = 1/2, cos 30° = √3/2, tg 30° = √3/3, ctg 30° = √3
sin 45° = √2/2, cos 45° = √2/2, tg 45°= 1, ctg 45° = 1
sin 60° = √3/2, cos 60° = 1/2, tg 60° =√3 , ctg 60° = √3/3

Как выглядит для значений, синуса, косинуса, тангенса и котангенса

Таблица тригонометрических функций выглядит следующим образом:

Значение аргумента α задано в верхней строке задано в градусах (от 0° до 90°), во второй строке — в радианах (0, π/6, π/4, π/3, π/2 радиан). Иногда в таблице присутствуют значения только в радианах. Для перевода в градусы необходимо подставить число π = 180°, например, π/6 = 180/6 = 30°.

Обозначение «не определен» в таблице (тангенс 90° и котангенс 0°) означает, что функция является неопределенной.

Пример

Алгоритм решения задач с помощью данной таблицы крайне прост. К примеру, нам необходимо найти значение косинуса 30°. Для этого найдем ячейку пересечения строки косинуса и столбца значений для 30°. В данной ячейке находится искомое значение.

Таблица косинусов для 0°-180°

cos(1°) 0.9998
cos(2°) 0.9994
cos(3°) 0.9986
cos(4°) 0.9976
cos(5°) 0.9962
cos(6°) 0.9945
cos(7°) 0.9925
cos(8°) 0.9903
cos(9°) 0.9877
cos(10°) 0.9848
cos(11°) 0.9816
cos(12°) 0.9781
cos(13°) 0.9744
cos(14°) 0.9703
cos(15°) 0.9659
cos(16°) 0.9613
cos(17°) 0.9563
cos(18°) 0.9511
cos(19°) 0.9455
cos(20°) 0.9397
cos(21°) 0.9336
cos(22°) 0.9272
cos(23°) 0.9205
cos(24°) 0.9135
cos(25°) 0.9063
cos(26°) 0.8988
cos(27°) 0.891
cos(28°) 0.8829
cos(29°) 0.8746
cos(30°) 0.866
cos(31°) 0.8572
cos(32°) 0.848
cos(33°) 0.8387
cos(34°) 0.829
cos(35°) 0.8192
cos(36°) 0.809
cos(37°) 0.7986
cos(38°) 0.788
cos(39°) 0.7771
cos(40°) 0.766
cos(41°) 0.7547
cos(42°) 0.7431
cos(43°) 0.7314
cos(44°) 0.7193
cos(45°) 0.7071
cos(46°) 0.6947
cos(47°) 0.682
cos(48°) 0.6691
cos(49°) 0.6561
cos(50°) 0.6428
cos(51°) 0.6293
cos(52°) 0.6157
cos(53°) 0.6018
cos(54°) 0.5878
cos(55°) 0.5736
cos(56°) 0.5592
cos(57°) 0.5446
cos(58°) 0.5299
cos(59°) 0.515
cos(60°) 0.5
cos(61°) 0.4848
cos(62°) 0.4695
cos(63°) 0.454
cos(64°) 0.4384
cos(65°) 0.4226
cos(66°) 0.4067
cos(67°) 0.3907
cos(68°) 0.3746
cos(69°) 0.3584
cos(70°) 0.342
cos(71°) 0.3256
cos(72°) 0.309
cos(73°) 0.2924
cos(74°) 0.2756
cos(75°) 0.2588
cos(76°) 0.2419
cos(77°) 0.225
cos(78°) 0.2079
cos(79°) 0.1908
cos(80°) 0.1736
cos(81°) 0.1564
cos(82°) 0.1392
cos(83°) 0.1219
cos(84°) 0.1045
cos(85°) 0.0872
cos(86°) 0.0698
cos(87°) 0.0523
cos(88°) 0.0349
cos(89°) 0.0175
cos(90°)
cos(91°) -0.0175
cos(92°) -0.0349
cos(93°) -0.0523
cos(94°) -0.0698
cos(95°) -0.0872
cos(96°) -0.1045
cos(97°) -0.1219
cos(98°) -0.1392
cos(99°) -0.1564
cos(100°) -0.1736
cos(101°) -0.1908
cos(102°) -0.2079
cos(103°) -0.225
cos(104°) -0.2419
cos(105°) -0.2588
cos(106°) -0.2756
cos(107°) -0.2924
cos(108°) -0.309
cos(109°) -0.3256
cos(110°) -0.342
cos(111°) -0.3584
cos(112°) -0.3746
cos(113°) -0.3907
cos(114°) -0.4067
cos(115°) -0.4226
cos(116°) -0.4384
cos(117°) -0.454
cos(118°) -0.4695
cos(119°) -0.4848
cos(120°) -0.5
cos(121°) -0.515
cos(122°) -0.5299
cos(123°) -0.5446
cos(124°) -0.5592
cos(125°) -0.5736
cos(126°) -0.5878
cos(127°) -0.6018
cos(128°) -0.6157
cos(129°) -0.6293
cos(130°) -0.6428
cos(131°) -0.6561
cos(132°) -0.6691
cos(133°) -0.682
cos(134°) -0.6947
cos(135°) -0.7071
cos(136°) -0.7193
cos(137°) -0.7314
cos(138°) -0.7431
cos(139°) -0.7547
cos(140°) -0.766
cos(141°) -0.7771
cos(142°) -0.788
cos(143°) -0.7986
cos(144°) -0.809
cos(145°) -0.8192
cos(146°) -0.829
cos(147°) -0.8387
cos(148°) -0.848
cos(149°) -0.8572
cos(150°) -0.866
cos(151°) -0.8746
cos(152°) -0.8829
cos(153°) -0.891
cos(154°) -0.8988
cos(155°) -0.9063
cos(156°) -0.9135
cos(157°) -0.9205
cos(158°) -0.9272
cos(159°) -0.9336
cos(160°) -0.9397
cos(161°) -0.9455
cos(162°) -0.9511
cos(163°) -0.9563
cos(164°) -0.9613
cos(165°) -0.9659
cos(166°) -0.9703
cos(167°) -0.9744
cos(168°) -0.9781
cos(169°) -0.9816
cos(170°) -0.9848
cos(171°) -0.9877
cos(172°) -0.9903
cos(173°) -0.9925
cos(174°) -0.9945
cos(175°) -0.9962
cos(176°) -0.9976
cos(177°) -0.9986
cos(178°) -0.9994
cos(179°) -0.9998
cos(180°) -1

Таблица основных тригонометрических функций для углов 0, 30, 45, 60, 90, … градусов

Из тригонометрических определений функций $\sin$, $\cos$, $\tan$ и $\cot$ можно узнать их значения для углов $0$ и $90$ градусов:

$\sin⁡0°=0$, $\cos0°=1$, $\tan 0°=0$, $\cot 0°$ не определяется;

$\sin90°=1$, $\cos90°=0$, $\cot90°=0$, $\tan 90°$ не определяется.

В школьном курсе геометрии при изучении прямоугольных треугольников находят тригонометрические функции углов $0°$, $30°$, $45°$, $60°$ и $90°$.

Найденные значения тригонометрических функций для указанных углов в градусах и радианах соответственно ($0$, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$) для удобства запоминания и использования заносят в таблицу, которую называют тригонометрической таблицей, таблицей основных значений тригонометрических функций и т.п.

При использовании формул приведения, тригонометрическая таблица может быть расширена до угла $360°$ и соответственно $2\pi$ радиан:

Применяя свойства периодичности тригонометрических функций, каждый угол, который будет отличаться от уже известного на $360°$, можно рассчитать и записать в таблицу. Например, тригонометрическая функция для угла $0°$ будет иметь такое же значение и для угла $0°+360°$, и для угла $0°+2 \cdot 360°$, и для угла $0°+3 \cdot 360°$ и т.д.

С помощью тригонометрической таблицы можно определить значения всех углов единичной окружности.

В школьном курсе геометрии предполагается запоминание основных значений тригонометрических функций, собранных в тригонометрической таблице, для удобства решения тригонометрических задач.

Практические примеры использования таблицы

Таблицам Брадиса легко можно найти применение в современном учебном процессе, например, выполняя школьные уроки.

Задача №1

10-метровая лестница опирается на здание таким образом, что имеет угол наклона 35°. Необходимо узнать расстояние от земли до ее вершины.

Решение

Имеем треугольник, где угол BСA = 90°, BАC = 30°. По определению^

sin ВАС = ВС /АВ

где ВС — высота лестницы, которую нужно найти, а АВ — известная из условия длина.

Таким образом:

\(ВС\;=\;АВ\;х\;\sin\;ВАС\).

Узнав из таблицы Брадиса нужный синус и подставив все известные значения в формулу, можно найти ответ:

ВС (высота лестницы) = 10 м х 0,5736 =  5,736 метров.

Задача №2

Найдете длину тени от маяка высокой 30 м, если солнце находится в 60° над горизонтом.

Решение

Схематически условия задачи можно представить в виде треугольника, с прямым углом ВСА, и ВАС = 55°. По определению:

\( tg\;ВАС\;=\;АВ\;/\;СВ\)

где АВ — высота маяка, а СВ — длина тени.

Отсюда \(СВ\;=\;АВ\;/\;tg\;ВАС\).

Определив по таблице Брадиса нужную величину и подставив в формулу все известные значения, получим:

Использование таблицы

В таблице достаточно найти необходимую тригонометрическую функцию и значение угла или радиан, для которых эту функцию нужно вычислить. На пересечении строки с функцией и столбца со значением получим искомое значение тригонометрической функции заданного аргумента.

На рисунке можно увидеть, как найти значение $\cos⁡60°$, которое равно $\frac{1}{2}$.

Аналогично используется расширенная тригонометрическая таблица. Преимуществом ее использования является, как уже упоминалось, вычисление тригонометрической функции практически любого угла. Например, легко можно найти значение $\tan 1 380°=\tan (1 380°-360°)=\tan(1 020°-360°)=\tan(660°-360°)=\tan300°$:

Таблица синусов и косинусов

В силу широкого использования синусов и косинусов в учебных задачах, это самая распространенная из таблиц Брадиса. Она дает значение этих тригонометрических функций для любого острого угла от 0° до 90°. С помощью дополнительных колонок можно находить и более точные спецификации. Это 6′, 12′,18, 24′, 30′, 36′, 42′, 48′ и 54′ для углов указанного диапазона, например:

  • \(\sin\;10^\circ\;=\;0,1736\). С помощью дополнительных колонок находим — \(\sin\;10^\circ\;12’\;=\;0,1771,\;\sin\;10^\circ\;24’\;=\;0,1805\);
  • \(\sin\;50^\circ\;=\;0,7660\). Обращаясь к дополнительной колонке выясняем, что \(\sin\;50^\circ\;12’\;=\;0,7683,\;\sin\;50^\circ\;24’\;=\;0,7705\).

Если нужны еще более точные показатели, то нужно использовать поправочные коэффициенты, отнимая и прибавляя их к ближайшему табличному значению минут. Используя их, находим:

  • \(\sin\;10^\circ\;15’\;=\;\sin\;10^\circ\;12’\;+\;0,0009\;=\;0,1771+0,0009\;=\;0,1780\);
  • \(\sin\;50^\circ\;22’\;=\;\sin\;50^\circ\;24′-0,0004\;=\;0,7705-0,0004\;=\;0,7701\).

Для нахождения косинусов можно использовать значения в правой колонке, но куда удобнее вычислять через синус угла, дополняющего до 90°. В этом случае:

  • \(\cos\;10^\circ\;=\;\sin\;80^\circ\;=\;0,9848;\)
  • \(\cos\;50^\circ\;=\;\sin\;40^\circ\;=\;0,6428.\)

Аналогично проводят и более точные вычисления, в том числе — с использованием поправочных коэффициентов:

  • \(\cos\;10^\circ\;12’\;=\;\sin\;79^\circ\;48’\;=\;0,9842;\)
  • \(\cos\;10^\circ\;15’\;=\;\sin\;79^\circ\;45’\;=\;\sin\;79^\circ\;48′-0,0002\;=\;0,9842-0,002\;=\;0,9840;\)
  • \(\cos\;50^\circ\;24’\;=\;\sin\;39^\circ\;36’\;=\;0,6374;\)
  • \(\cos\;50^\circ\;22’\;=\;\sin\;39^\circ\;38’\;=\;\sin\;39^\circ\;36’\;+\;0,0004\;=0,6374\;+\;0,0004\;=\;0,6380.\)
Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: