Область значения функции

Область определения функции

2. Область определения функции

По­ня­тие функ­ции яв­ля­ет­ся важ­ней­шим в ма­те­ма­ти­ке. Важны все эле­мен­ты, за­да­ю­щие функ­цию.

Мно­же­ство всех до­пу­сти­мых зна­че­ний ар­гу­мен­та  на­зы­ва­ет­ся об­ла­стью опре­де­ле­ния функ­ции и обо­зна­ча­ет­ся .

В слу­чае, когда , функ­цию на­зы­ва­ют чис­ло­вой.

Рас­смот­рим несколь­ко при­ме­ров на на­хож­де­ние есте­ствен­ной об­ла­сти опре­де­ле­ния функ­ции (так го­во­рят, если мно­же­ство  не за­да­но).

1. .  Ответ: .

2. .  Ответ: , т.к. нель­зя де­лить на 0.

3. .  Ответ: , т.к. нель­зя из­вле­кать квад­рат­ный ко­рень из от­ри­ца­тель­ных чисел.

4. .  Ответ: .

5. .  Ответ: .

6. .  Ответ: .

Об­ласть опре­де­ле­ния функ­ции – важ­ней­ший эле­мент функ­ции. Если при за­да­нии функ­ции мно­же­ство   не за­да­но, то об­ласть опре­де­ле­ния счи­та­ет­ся есте­ствен­ной, т.е. сов­па­да­ю­щей с об­ла­стью опре­де­ле­ния вы­ра­же­ния .

При­ме­ры.

1. Найти об­ласть опре­де­ле­ния и по­стро­ить гра­фик функ­ции . 

Ответ:  (есте­ствен­ная об­ласть опре­де­ле­ния).

Гра­фи­ком функ­ции яв­ля­ет­ся па­ра­бо­ла (см. Рис.1).

2. Найти об­ласть опре­де­ле­ния и по­стро­ить гра­фик функ­ции . 

Ответ: .

Гра­фи­ком функ­ции яв­ля­ет­ся часть па­ра­бо­лы (см. Рис.2).

Рис. 2. Гра­фик функ­ции . 

Об­ласть опре­де­ле­ния все­гда при­сут­ству­ет при за­да­нии функ­ции: то ли в явном виде, то ли счи­та­ет­ся есте­ствен­ной об­ла­стью опре­де­ле­ния.

Графики тригонометрических функций

С чего начинаются тригонометрические мучения в школе? Правильно. С синуса

Построим график функции

Данная линия называется синусоидой.

Напоминаю, что «пи» – это иррациональное число: , и в тригонометрии от него в глазах рябит.

Основные свойства функции :

Данная функция является периодической с периодом . Что это значит? Посмотрим на отрезок . Слева и справа от него бесконечно повторяется точно такой же кусок графика.

Область определения: , то есть для любого значения «икс» существует значение синуса.

Область значений: . Функция  является ограниченной: , то есть, все «игреки» сидят строго в отрезке .
Такого не бывает:  или , точнее говоря, бывает, но указанные уравнения не имеют решения.

Синус – это функция нечетная, синусоида симметричная относительно начала координат, и справедлив следующий факт: . Таким образом, если в вычислениях встретится, например, , то минус терять здесь ни в коем случае нельзя! Он выносится:

Как ведет себя синус на бесконечности? Попробуем провести исследование с помощью пределов:,  Чему равны такие пределы? Запомните, данных пределов не существует. По вполне понятным причинам, график синуса болтается как как неприкаянный, то дойдет единицы, то уйдет к минус единице и так до бесконечности.

Вот вам пример, когда предела не существует. В высшей математике это можно встретить не очень часто, но такое понятие, как «предела не существует» – существует!

В практических вычислениях желательно (и даже обязательно) знать и помнить следующие значения синуса: , , . Другие значения синуса (а также остальных тригонометрических функций) можно найти в методическом материале Тригонометрические таблицы.

График косинуса

Построим график функции

График косинуса – это та же самая синусоида, сдвинутая вдоль оси  на  влево
(см. также Пример 8 урока о геометрических преобразованиях графиков).

Поэтому почти все свойства синуса справедливы и для косинуса. За некоторым, но существенным исключением.

Косинус – это функция четная, ее график симметричен относительно оси  , и справедлив следующий факт: . То есть, минус перед аргументом косинуса можно безболезненно убирать (или наоборот, ставить). В отличие от синуса в косинусе минус «бесследно пропадает».

Для решения практических задач нужно знать и помнить следующие значения косинуса: , , .

Графики тангенса и котангенса

Построим график функции

Основные свойства функции :

Данная функция является периодической с периодом . То есть, достаточно рассмотреть отрезок , слева и справа от него ситуация будет бесконечно повторяться.

Область определения:  – все действительные числа, кроме …  , , , … и т. д. или коротко: , где  – любое целое число. Множество целых чисел (… -4, -3, -2, -1, 0, 1, 2, 3, 4, …) в высшей математике обозначают жирной буквой Z.

Область значений: . Функция  не ограничена. В этом легко убедиться и аналитически: – если мы приближаемся по оси  к значению  справа, то ветка тангенса уходит на минус бесконечность, бесконечно близко приближаясь к своей асимптоте . – если мы приближаемся по оси  к значению  слева, то «игреки» шагают вверх на плюс бесконечность, а ветка тангенса бесконечно близко приближается к асимптоте .

Тангенс – функция нечетная, как и в случае с синусом, минус из-под тангенса не теряется, а выносится: .

В практических вычислениях полезно помнить следующие значения тангенса: , , , а также те точки, в которых тангенса не существует (см. график).

График котангенса – это почти тот же самый тангенс, функции связаны тригонометрическим соотношением . Вот его график:

Свойства попробуйте сформулировать самостоятельно, они практически такие же, как и у тангенса.

Общая информация

У каждой функции y = f (x) есть два типа переменных: зависимые и независимые. Переменная «х» является независимой, поскольку она может принимать любые значения, кроме тех, которые «превращают» функцию в пустое множество (этого необходимо избегать). Они бывают с одной или несколькими независимыми переменными. Необходимо выяснить все значения зависимой переменной.

Существует несколько методов решения задач такого типа. К ним относятся следующие способы: автоматизированный и ручной. Решение первым подразумевает использование специальных программных оболочек и web-приложений, позволяющих найти область значения функции. Онлайн-калькулятор с решением применяется для тех, кто выполняет большое количество вычислений или проверку вычислений.

В различных дисциплинах необходимо исследовать поведение функций. Например, при проектировании какого-либо программного продукта. Программисты занимаются поиском «багов», при которых происходит некорректная работа приложения. Если заданы недопустимые параметры независимой переменной, то произойдет ошибка. Это называется исключением, и его всегда следует обрабатывать. При проектировании различных устройств нужно также уметь находить область значения функции.

Основные понятия

Руководствуясь некоторыми данными, можно сделать вывод: областью значений некоторой функции называются все ее допустимые значения. Обозначается она буквой «E», т. е. E (f) или E (y). Когда y = f (x) является сложной (w = f (x, y, z)), тогда можно ее обозначить «E (w)».

Независимая переменная, принимающая некоторые значения, называется аргументом. Для конкретного случая существует определенный алгоритм. Можно сразу определить E (f), но в некоторых ситуациях нужно выполнить некоторые преобразования.

Например, нужно найти область значений квадратичной функции y = 3x 2 — 2x — 1. Следует записать уравнение 3x 2 — 2x — 1 = 0. Ордината вычисляется таким образом: y0 = -D / 4a = — / 4a = — / (4 * 3) = -16 / 12 = -4/3. Если коэффициент а>0, то ветви параболы направлены вверх. Следовательно, E (y) = (-4/3;+бесконечность).

Специалисты-математики утверждают, что важным аспектом является определение типа функции. Следовательно, следует разобраться в их классификации. Для этого необходимо знать их графики и названия.

Типы функций

Перед тем, как найти все допустимые значения, нужно знать область значения некоторых элементарных функций. Для каждой из них существует свой промежуток:

  1. (-бесконечность;+бесконечность): y =kx + b, y = x^(2n+1), y = x^(1/(2n+1)), y = log (x) с основанием а, y = tg (x) и y = ctg (x).
  2. [0;+бесконечность): y = x^(2n), y = x^(1/(2n)) и y = a^x.
  3. (-бесконечность;0] U [0;+бесконечность) только для y = k / x (гипербола).
  4. : y = sin (x) и y = cos (x).
  5. : y = arccos (x) и arcsin (x).
  6. [-Pi/2;Pi/2]: y = arctg (x) и arcsin (x).

Если функция является многочленом четной степени, то для нее существует интервал [m;+бесконечность). Значение «m» — наименьшее значение многочлена. На промежутке (-бесконечность;n) число n — наибольшее его значение.

Довольно сложной задачей считается нахождение области значений тригонометрических функций. Примером одной из них считается y = cos (2x) + 2cos (x). Кроме того, при нахождении E (f) необходимо руководствоваться не только табличными значениями. Этих данных мало, поскольку нужно также знать о свойствах некоторых функций и способы нахождения E.

Важные свойства

Для качественного исследования нужно знать свойства простых функций: монотонность, непрерывность, дифференцируемость, четность или нечетность, периодичность, область определения и значения. Среди свойств можно выделить несколько основных:

  1. В случае, когда функция f (x) является непрерывной, и наблюдается ее возрастание или убывание на отрезке , то множество значений — интервал .
  2. Если y = f (x) обладает непрерывностью на промежутке , и существует некоторое минимальное m и максимальное М ее значения, то множеством ее значений является интервал .
  3. При непрерывности и дифференцируемости функции на промежутке , она имеет минимальное и максимальное значения на данном промежутке.

Последние два свойства применяются для непрерывных функций. Простое решение позволяет получить первое свойство

При этом очень важно доказать ее монотонность. Задача существенно упрощается, когда удается доказать четность или нечетность функции, а также ее периодичность

По необходимости следует проверять и использовать некоторые ее свойства: непрерывность (при разрыве нужно определить его точку или интервал), монотонность, дифференцируемость, периодичность, четность или нечетность и т. д.

Область определения функции

Остановимся на процедуре нахождения области определе­ния функции.

1. В том случае, когда функция задана в аналитическом виде (посредством формулы)

и никаких ограничений или оговорок более не имеется, область ее определения устанавливается исходя из правил выполнения математических операций, входящих в формулу f в (3.1). Эти ограничения хорошо известны: подкоренное выражение в кор­не четной степени не может быть отрицательным, знаменатель дроби не может быть равным нулю, выражение под знаком ло­гарифма должно быть только

положительным, а также неко­торые другие. Приведем здесь два примера.

Пример 1. у = log2 (x2 — 5x + 6).

Область определения этой функции находится из условия x2 — 5x + 6 > 0. Поскольку x = 2 и x = 3 — корни квадратно­го трехчлена, стоящего под знаком логарифма, то это условие выполняется на двух полубесконечных интервалах: (-

Рис. 3.4

Пример 2. у = arcsin

Область определения этой функции находится из совокуп­ности двух условий: аргумент под знаком arcsin не может быть по модулю больше единицы и знаменатель аргумента не дол­жен равняться нулю, т.е.

Двойное неравенство эквивалентно двум более простым нера­венствам: х + 2 ≥ 1 и х + 2 ≤ -1. Отсюда получаем, что область определения функции состоит из двух полубесконечных проме­жутков: (-

х = —

2. Область определения функции задана вместе с функцией f(x).

Пример 3. у = 3x-4­­/3 + 2, 1 ≤ х ≤ 4.

3. Функция имеет определенный прикладной характер, и область ее существования определяется также и реальными значениями входящих параметров (например, задачи с физи­ческим смыслом).

Определение 2. Функция у =f(x) называется четной (сим­метрия относительно оси Оу), если для любых значений аргу­мента из области ее определения выполнено равенство

Определение 3. Функция у = f(x) называется нечетной (симметрия относительно начала координат О), если выпол­нено условие:

Например, функции у = х2 и у = cos x являются четными, а функции у = x3 и у = sin x— нечетными.

Приложения в экономике

Приведем примеры использования функций в области эко­номики.

1. Кривые спроса и предложения. Точка равнове­сия. Рассмотрим зависимости спроса D (demand) и предложе­ния S (supply) от цены на товар Р (price). Чем меньше цена, тем больше спрос при постоянной покупательной способности населения. Обычно зависимость D отР имеет вид ниспадаю­щей кривой (рис. 3.5, а):

где а < 0. В свою очередь предложение растет с увеличением цены на товар, и потому зависимость S отР имеет следующую характерную форму:

где b ≥ 1 (рис. 3.5, б). В формулах (3.2) и (3.3) с и d — так называемые экзогенные величины; они зависят от внешних причин (благосостояние общества, политическая обстановка и т.п.). Вполне понятно, что переменные, входящие в формулы (3.2) и (3.3), положительны, поэтому графики функций имеют смысл только в первой координатной четверти.

Рис. 3.5

Для экономики представляет интерес условие равновесия, т.е. когда спрос равен предложению; это условие дается урав­нением

и соответствует точке пересечения кривых D и S это так называемая точка равновесия (рис. 3.6). Цена Ро, при которой выполнено условие (3.4), называется равновесной.

Рис. 3.6

При увеличении благосостояния населения, что соответ­ствует росту величины с в формуле (3.2), точка равновесия М смещается вправо, так как кривая D поднимается вверх; при этом цена на товар растет при неизменной кривой предло­жения S.

2. Паутинная модель рынка. Рассмотрим простейшую задачу поиска равновесной цены. Это одна из основных проб­лем рынка, означающая фактически торг между производите­лем и покупателем (рис. 3.7).

Рис. 3.7

Пусть сначала цену P1 называет производитель (в прос­тейшей схеме он же и продавец). Цена P1 на самом деле выше равновесной (естественно, всякий производитель стремится по­лучить максимум выгоды из своего производства). Покупатель оценивает спрос D1 при этой цене и определяет свою цену Р2, при которой этот спрос D1 равен предложению. Цена Р2 ниже равновесной (всякий покупатель стремится купить подешев­ле). В свою очередь производитель оценивает спрос D2, соот­ветствующий цене P2, и определяет свою цену Р3, при которой спрос равен предложению; эта цена выше равновесной. Процесс торга продолжается и при определенных условиях приводит к устойчивому приближению к равновесной цене, т.е. к «скручи­ванию» спирали. Если рассматривать последовательность чисел, состоящую из называемых в процессе торга цен, то она имеет своим пределом равновесную цену Р:

PnP

StudFiles.ru

Область значения и определения функции

Область определения —  y(x) любые числовые значения аргумента x.

Чаще всего  область определения выражают как функцию D(y).

В математике существует две главных запрещенных (недопустимых) операции:

  • деление любого числового значения на ноль;
  • извлечение квадратного корня, из числа, которое имеет отрицательное значение.

При определении области функции, вступают в силу два основных ограничения:

  • В функции может быть деление на любую переменную. Таким образом, знаменатель, будет равен нулю и получим недопустимое значение. В таком случае, принято считать областью определения все действительные числа.
  • Функция имеет действие: как извлечение квадратного корня. Подкоренное выражение обязательно не должно быть отрицательным. Множество решений этого неравенства и будет областью определения функции.

Область определения функции

Область определения или область задания функции — множество, на котором задаётся функция. В каждой точке этого множества значение функции должно быть определено.

Определение

Если на множестве X {\displaystyle X} задана функция, которая отображает множество X {\displaystyle X} в другое множество, то множество X {\displaystyle X} называется областью определения или областью задания функции.

Более формально, если задана функция f {\displaystyle f} , которая отображает множество X {\displaystyle X} в Y {\displaystyle Y} , то есть: f : X → Y {\displaystyle f\colon X\to Y} , то

множество X {\displaystyle X} называется областью определения или областью задания функции f {\displaystyle f} и обозначается D ( f ) {\displaystyle D(f)} или d o m f {\displaystyle \mathrm {dom} \,f} (от англ. domain — «область»).

Иногда рассматривают функции, определенные на подмножестве D {\displaystyle D} некоторого множества X {\displaystyle X} . В этом случае множество X {\displaystyle X} иногда называют областью отправления функции f {\displaystyle f} .

Примеры

Наиболее наглядные примеры областей определения доставляют числовые функции. Мера и функционал также доставляют важные в приложениях виды областей определения.

Числовые функции

Числовые функции — это функции, относящиеся к следующим двум классам:

  • вещественнозначные функции вещественного переменного — это функции вида f : R → R {\displaystyle f\colon \mathbb {R} \to \mathbb {R} } ;
  • а также комплекснозначные функции комплексного переменного вида f : C → C {\displaystyle f\colon \mathbb {C} \to \mathbb {C} } ,

где R {\displaystyle \mathbb {R} } и C {\displaystyle \mathbb {C} }  — множества вещественных и комплексных чисел соответственно.

Тождественное отображение

Область определения функции f ( x ) = x {\displaystyle f(x)=x} совпадает с областью отправления ( R {\displaystyle \mathbb {R} } или C {\displaystyle \mathbb {C} } ).

Гармоническая функция

Область определения функции f ( x ) = 1 / x {\displaystyle f(x)=1/x} представляет собой комплексную плоскость без нуля:

поскольку формула не задаёт значение функции в нуле каким-нибудь числом, что требуется в формулировке понятия функции. Область отправления представляет собой всю комплексную плоскость.

Дробно-рациональные функции

Область определения функции вида

представляет собой вещественную прямую или комплексную плоскость за исключением конечного числа точек, которые являются решениями уравнения

Эти точки называются полюсами функции f {\displaystyle f} .

Так, например, f ( x ) = 2 x x 2 − 4 {\displaystyle f(x)={\frac {2x}{x^{2}-4}}} определен на всех точках, где знаменатель не обращается в ноль, то есть, где x 2 − 4 ≠ 0 {\displaystyle x^{2}-4\neq 0} . Таким образом d o m f {\displaystyle \mathrm {dom} \,f} является множеством всех действительных (или комплексных) чисел кроме 2 и -2.

Мера

Если каждая точка области определения функции — это некоторое множество, например, подмножество заданного множества, то говорят, задана функция множества.

Мера — пример такой функции, где в качестве области определения функции (меры) выступает некоторая совокупность подмножеств заданного множества, являющееся, например, кольцом или полукольцом множеств.

Например, определённый интеграл представляет собой функцию ориентированного промежутка.

Функционал

Пусть F = { f ∣ f : X → R } {\displaystyle \mathbb {F} =\{f\mid f\colon X\to \mathbb {R} \}}  — семейство отображений из множества X {\displaystyle X} в множество R {\displaystyle \mathbb {R} } . Тогда можно определить отображение вида F : F → R {\displaystyle F\colon \mathbb {F} \to \mathbb {R} } . Такое отображение называется функционалом.

Если, например, фиксировать некоторую точку x 0 ∈ X {\displaystyle x_{0}\in ~X} , то можно определить функцию F ( f ) = f ( x 0 ) {\displaystyle F(f)=f(x_{0})} , которая принимает в «точке» f {\displaystyle f} то же значение, что и сама функция f {\displaystyle f} в точке x 0 {\displaystyle x_{0}} .

ru.wikipedia.org

Как найти область определения функции многих переменных — подробная инструкция

При записи функции нескольких переменных (например, двух переменных) в виде формулы \(z = f(x, y)\), область определения этой функции является множеством всех значений точек плоскости ХОУ, при которых эта формула имеет смысл, и функция принимает действительные значения.

В действительности, принципы нахождения области определения функции нескольких переменных схожи с правилами для области определения функции одной переменной, которые соответствуют следующему алгоритму действий:

  • определение типа или типов ограничений;
  • запись и поиск корней соответствующих неравенств;
  • запись интервала или интервалов допустимых значений аргумента.

Разница заключается в том, что в случае функции двух переменных область определения представляет собой какое-то множество точек плоскости, а не прямой, как для функции одной переменной.

Если рассматривается функция трех переменных, то областью определения станет множество точек, принадлежащих трехмерному пространству.

Когда речь идет о функции n переменных, область определения соответствует множеству точек абстрактного n-мерного пространства.

Область определения функции двух переменных с корнем n-й степени

Представим некую функцию:

\(z=\sqrt{\phi(x,y)}\)

Здесь n является каким-то натуральным числом. Запишем варианты для области определения функции при разных значениях n:

  1. При n в виде четного числа область определения функции соответствует множеству точек плоскости со всеми значениями подкоренного выражения, которые больше или равны нулю. Таким образом: \(\phi(x,y) \geq 0\).
  2. При n в виде нечетного числа область определения функции представляет собой множество каких-либо значений  \(\phi(x,y)\), то есть соответствует всей плоскости ХОУ.

Когда функция имеет вид \(z = (\phi(x,y))^{a}\), она определяется таким образом:

  • при положительных значениях a область определения соответствует всей плоскости ХОУ, включая оси;
  • при отрицательных значениях а область определения функции соответствует множеству значений \(\phi(x,y)\), которые не равны нулю.

Когда функция имеет вид \(z = (\phi(x,y))^{ \frac{a}{b}}\), она определяется таким образом:

  • при положительных значениях \(\frac{a}{b}\) область определения соответствует множеству таких точек на плоскости, в которых \(\phi(x,y) \geq 0\);
  • при отрицательных значениях \(\frac{a}{b}\) область определения функции соответствует множеству точек на плоскости, в которых \(\phi(x,y)> 0\).

Область определения логарифмической функции двух переменных

Рассмотрим логарифмическую функцию двух переменных, записанную в виде:

\(z = \log_{a}{\phi(x,y)}\)

Данная функция определена в том случае, когда ее аргумент обладает положительным значением. Тогда областью определения функции является множество таких точек, в которых:

\(\phi(x,y)> 0.\)

Область определения тригонометрических функций двух переменных

Рассмотрим варианты тригонометрических функций и их области определения:

  • для функции \(z = sin \phi(x,y)\) областью определения является полностью плоскость ХОУ;
  • для функции \(z = cos \phi(x,y)\) областью определения является полностью плоскость ХОУ;
  • для функции \(z = tg \phi(x,y)\) областью определения является полностью плоскость ХОУ, за исключением пар чисел, когда \(\phi(x,y)\) обладает значениями \(\frac{\pi}{2}+\pi k,\) где \(k\in Z\);
  • для функции \(z =c tg \phi(x,y)\) областью определения является полностью плоскость ХОУ, за исключением пар чисел, когда \(\phi(x,y)\) обладает значениями k, где \(k\in Z.\)

Область определения обратных тригонометрических функций двух переменных

Рассмотрим варианты обратных тригонометрических функций и их области определения:

  • для функции \(z = arcsin \phi(x,y)\) областью определения является множество таких точек, при которых \(-1\leq \phi(x,y) \leq 1\);
  • для функции \(z = arccos \phi(x,y)\) областью определения является множество таких точек, при которых \(-1\leq \phi(x,y) \leq 1\);
  • для функции \(z = arctg \phi(x,y)\) областью определения является полностью плоскость ХОУ;
  • для функции \(z =arcc tg \phi(x,y)\) областью определения является полностью плоскость ХОУ.

Область определения дроби как функции двух переменных

Представим, что функция записана следующим образом:

\(z = \frac{a}{\phi(x,y)}\)

В таком случае, область определения данной функции соответствует всем точкам плоскости при выполнении условия:

\(\phi(x,y) \neq 0.\)

Область определения линейной функции двух переменных

Предположим, что функция задана таким образом:

\(z = ax + by + c\)

В этом случае, область определения рассматриваемой функции соответствует полностью всей плоскости ХОУ.

Степенная функция при нецелом действительном показателе степени (меньше минус единицы)

Теперь рассмотрим случай, когда основание показательной функции больше, чем единица ( а>

Теперь разберем частный случай, когда основание логарифмической функции больше единицы: а>

  1. Функция косинус: y = cos ( х )
  1. Функция котангенс: y = c t g ( х )
  1. Функция арккосинус: y = a r c cos ( х )
  1. Функция арккотангенс: y = a r c c t g ( х )
  • область определения: x ∈ — ∞ ; + ∞ ;
  • область значений: y ∈ ( 0 ; π ) ;
  • данная функция – общего вида;
  • функция является убывающей на всей области определения;
  • функция арккотангенс имеет вогнутость при x ∈ 0 ; + ∞ ) и выпуклость при x ∈ ( — ∞ ; 0 ;
  • точка перегиба имеет координаты 0 ; π 2 ;
  • горизонтальные асимптоты – прямые y = π при x → — ∞ (на чертеже – линия зеленого цвета) и y = 0 при x → + ∞ .
Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: