Выберите уравнение для расчета стороны an правильного многоугольника

Уравнение для расчета стороны an правильного многоугольника

Основные формулы

Для каждого треугольника существует набор формул, с помощью которых можно определить его элементы. Чаще всего приходится выяснять длины сторон, площадь, высоты и периметр. При этом если известны боковые грани, можно найти практически любые остальные параметры.

Вокруг правильной фигуры можно описать круг, причём окружность можно и вписать в середину. Что интересно, их центры совпадут между собой и с местом пересечения высот. В этом случае радиус внешнего круга равняется R = (a * √‎3) / 3 = a / 2 * sin (a), а внутреннего: r = (a * √‎3) / 6 = R / 2. Чтобы найти высоту, зная радиус, используют выражение: h = (3 *R) / 2. Кроме этой формулы, довольно часто применяют равенство, связывающее сторону и перпендикуляр: h = (a * √‎3) / 2.

Доказательство верности формулы для нахождения радиуса вписанной окружности можно построить исходя из выражения, справедливого к равнобедренной фигуре: r = b / 2 √(‎(2 a — b) / (2 a + b)). Так как стороны равны, то a = b. Получается, что r = a / 2 √‎(2a — a) / (2a + a) = (a / 2) * √‎(1 / 3) = a / (2 * √‎3) = (a √‎3) / 6.

Чтобы определить длину стороны, нужно знать высоту и теорему Пифагора. Согласно ей, квадрат гипотенузы находится как сумма квадратов высоты и длины разделённого основания. Применяя теорему к правильной фигуре, можно записать: AB2 = h2 + (AB / 2)2. Это равенство решают следующим образом: AB2 = h2 + AB2 / 22. Выражение можно преобразовать в вид: (3a2 / 4) = h 2 → a 2 = (4 * h2) / 3 → a 2 = √‎((4 * h2) / 3) → a = (2 * h) / √3.

Из других существующих формул можно перечислить те, что чаще всего применяют при решении примеров:

  • Площадь. Находят из выражения: S = (a 2 * √3) / 4. Вывести эту формулу довольно просто. Если взять за основу, что равенство для площади верно, то исходя из свойств фигуры можно записать: S = ½ * a2 * sin 60 = ½ * a2 * √3 / 2 = (√3 / 4) * a2. Что и следовало доказать.
  • Периметр. Чтобы его определить, нужно сложить длины всех сторон, но так как в правильной фигуре они равны, можно воспользоваться формулой: P = 3 * a.

Существуют ещё 2 значимые теоремы: косинусов и синусов. Согласно первой, квадрат стороны фигуры будет ранятся удвоенному произведению двух оставшихся отрезков и косинусу угла между ними, отнятому из суммы квадратов: a2 = b2 + c2 — 2 * b * c * cos (a). Согласно же второй, длины отрезков пропорциональны синусам углов, лежащих напротив: a / sin (a) = b / sin (b) = c / sinс.

Как найти сторону многоугольника, зная радиус вписанной окружности: простые способы расчета

1. Формула для правильного многоугольника:

Если известен радиус вписанной в правильный многоугольник окружности, то сторона многоугольника будет равна:

a = 2r × tg(π/n)

где r — радиус вписанной окружности, n — количество сторон в многоугольнике (например, для шестиугольника — n = 6).

2. Формула для произвольного многоугольника:

Если многоугольник произвольный, то для определения его сторон можно воспользоваться формулой:

a = 2r × sin(π/n)

где r — радиус вписанной окружности, n — количество сторон в многоугольнике.

3. Использование таблиц:

Есть таблицы, в которых указаны значения радиуса вписанной окружности и соответствующие стороны многоугольника. Например, для пятиугольника таблица может выглядеть следующим образом:

Радиус Сторона
1 1.381966
2 2.763932
3 4.145898

4. Использование формулы периметра:

Периметр многоугольника можно найти, зная радиус вписанной окружности. Для этого сначала найдем длину одной стороны многоугольника, затем умножим на количество сторон. Длину одной стороны можно найти, используя любую из приведенных выше формул, или воспользовавшись формулой:

P = 2nr × tg(π/n)

где n — количество сторон в многоугольнике, r — радиус вписанной окружности.

Формула нахождения радиуса вписанной окружности

Вычисление радиуса вписанной окружности ведется по формулам, которые зависят от фигуры и известных данных. Главным условием является тот факт, что фигура должна подходить под список тех, в которые можно вписать окружность.

Радиус — перпендикуляр, соединяющий центр окружности с любой точкой, лежащей на окружности. По длине радиус составляет половину диаметра.

Треугольник

Формула нахождения радиуса окружности, вписанной в треугольник через все стороны:

(r=sqrt{frac{left(p-aright)left(p-bright)left(p-cright)}p},)

где r — радиус,

a, b и c — стороны треугольника,

p — полупериметр, (p=frac{a+b+c}2.)

Формула нахождения радиуса окружности, вписанной в треугольник через сторону и высоту:

(r=frac{btimes h}{b+sqrt{4times h^2+b^2}},)

(r=frac{htimessqrt{a^2-h^2}}{a+sqrt{a^2-h^2}},)

где r — радиус,

a и b — стороны треугольника,

h — высота.

Равносторонний треугольник

Формула нахождения радиуса окружности, вписанной в равносторонний треугольник:

(r=frac a{2sqrt3},)

где r — радиус,

a — сторона треугольника.

Равнобедренный треугольник

Формула нахождения радиуса окружности, вписанной в равнобедренный треугольник через значения сторон:

(r=frac b2sqrt{frac{2a-b}{2a+b}},)

где r — радиус,

a и b — стороны треугольника.

Формула нахождения радиуса окружности, вписанной в равнобедренный треугольник через сторону и угол:

(r=Atimesfrac{sinleft(aright)timescosleft(aright)}{1+cosleft(aright)}= Atimescosleft(aright)timestanleft(frac a2right),)

(r=frac b2timesfrac{sinleft(aright)}{1+cosleft(aright)}=frac b2timestanleft(frac a2right),)

где r — радиус,

A и b — стороны треугольника,

a — угол при основании.

Прямоугольный треугольник

Формула нахождения радиуса окружности, вписанной в прямоугольный треугольник:

(r=frac{atimes b}{a+b+c}=frac{a+b-c}2,)

где r — радиус,

a и b — катеты треугольника,

c — гипотенуза.

Равнобедренная трапеция

Формула нахождения радиуса окружности, вписанной в равнобедренную трапецию:

(r=frac h2=frac{sqrt{ctimes b}}2,)

где r — радиус,

с — нижнее основание,

b — верхнее,

а — боковые стороны,

h — высота.

Формула нахождения радиуса окружности, вписанной в квадрат:

(r=frac a2,)

где r — радиус,

а — сторона квадрата.

Ромб

Формула нахождения радиуса окружности, вписанной в ромб через значения диагоналей:

(r=frac{Dtimes d}{4times a}=frac{Dtimes d}{2sqrt{D^2+d^2}}.)

Формула нахождения радиуса окружности, вписанной в ромб через значения стороны и угла:

(r=frac{atimessinleft(aright)}2.)

Формула нахождения радиуса окружности, вписанной в ромб через диагональ и угол:

(r=frac d2timescosleft(frac a2right)=frac d{2sqrt2}timessqrt{1+cosleft(aright)},)

(r=frac D2timessinleft(frac a2right)=frac D{2sqrt2}timessqrt{1-cosleft(aright)}.)

Формула нахождения радиуса окружности, вписанной в ромб через диагональ и сторону:

(r=frac{Dsqrt{a^2-{displaystylefrac{D^2}4}}}{2a},)

(r=frac{dsqrt{a^2-{displaystylefrac{d^2}4}}}{2a}.)

Формула нахождения радиуса окружности, вписанной в ромб через высоту:

(r=frac h2,)

где r — радиус,

а — сторона ромба,

D — большая диагональ,

d — меньшая диагональ,

a — острый угол,

h — высота.

Многоугольник

Формула нахождения радиуса окружности, вписанной в правильный многоугольник:

(r=frac a{2timestanleft({displaystylefrac{180^circ}N}right)},)

где r — радиус,

N — количество сторон многоугольника.

Шестиугольник

Формула нахождения радиуса окружности, вписанной в шестиугольник:

(r=frac{sqrt3}2times a,)

где r — радиус,

a — сторона шестиугольника.

Описанная и вписанная окружности правильного многоугольника

Докажем важную теорему о правильном многоуг-ке.

Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Далее проведем биссектрисы углов ∠А1 и ∠А2. Они пересекутся в некоторой точке О. Соединим О с другими вершинами многоуг-ка отрезками ОА3, ОА4 и т. д.

∠А1 и ∠А2 одинаковы по определению правильного многоуг-ка:

Из этого факта вытекает два равенства:

Получается, что ОА3 – это также биссектриса ∠А3. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное (1):

Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка:

Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность, ч. т. д.

Продолжим рассматривать выполненное нами построение с описанной окружностью. Ясно, что ∆ОА1А2, ∆ОА2А3, ∆ОА3А4, …, равны, ведь у них одинаковы по 3 стороны. Опустим из О высоты ОН1, ОН2, ОН3… на стороны многоуг-ка.

Так как высоты проведены в равных треуг-ках, то и сами они равны:

Теперь проведем окружность, центр которой находится в О, а радиус – это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Причем отрезки ОН1, ОН2, ОН3 окажутся радиусами. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности (по признаку касательной). Стало быть, эта окружность является вписанной:

Ясно, что такая окружность будет единственной вписанной. Если бы существовала вторая вписанная окружность, то ее центр был бы равноудален от сторон многоуг-ка, а потому лежал бы в точке пересечения биссектрис углов ∠А1, ∠А2, ∠А3, то есть в точке О. Так как расстояние от О до А1А2 – это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.

Примечание. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка.

Ещё раз вернемся к приведенному доказательству и заметим, что высоты ОН1, ОН2, ОН3,… проведены в равнобедренных треуг-ках∆ОА1А2, ∆ОА2А3, ∆ОА3А4,… Следовательно, эти высоты являются ещё и медианами, то есть точки Н1, Н2, Н3,… – это середины сторон многоуг-ка.

Задание. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу?

Решение. Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными.

Примечание. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

R=а.

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

S=πR²

Вписанная окружность

Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2.

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

S=3(2r/√3)²(√3)/2=r²(2√3)

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Угол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

r₂=а/2

Площадь нового шестиугольника можно посчитать так:

S=(3(√3)/2)(а(√3)/3)²=а(√3)/2

Формула расчета стороны многоугольника

Для расчета стороны многоугольника, зная радиус вписанной окружности, можно воспользоваться формулой:

где:

  • s — длина стороны многоугольника
  • r — радиус вписанной окружности
  • n — количество углов и сторон многоугольника

Эта формула основана на теореме тангенсов в геометрии.

Также, если известен диаметр вписанной окружности, то формула расчета стороны многоугольника будет иметь вид:

где d — диаметр вписанной окружности.

Важно учитывать, что эти формулы справедливы только для правильных многоугольников, в которых все стороны и углы равны. Для расчета длины описанной окружности многоугольника, также можно использовать следующую формулу:

Для расчета длины описанной окружности многоугольника, также можно использовать следующую формулу:

где C — длина описанной окружности многоугольника.

Эти формулы могут быть полезны при решении задач по геометрии и строительству, а также при проектировании многоугольных объектов, например, зданий или мебели.

Длина окружности

Рассмотрим – угольникnправильный     B1B2…Bn , вписанный в окружность радиуса радиуса R, и опустим из центра O окружности перпендикуляры на все стороны многоугольника (рис. 2).

Рис.2

Поскольку – угольникаnплощадь   B1B2…Bn   равна

то, обозначая длину окружности радиуса R буквой C, мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R:

C = 2πR.

Следствие. Длина окружности радиуса 1 равна   2π.

Как найти длину окружности через диаметр

Диаметр — отрезок, который соединяет две точки окружности и проходит через её центр. Формула длины окружности через диаметр:

l=πd, где

π— число пи — математическая константа, равная 3,14

d — диаметр окружности

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

l=2πr , где

π — число пи, равное 3,14

r — радиус окружности

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

где:

  • π — число пи, равное 3,14
  • S — площадь круга

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

l=πd, где

  • π — число пи, равное 3,14
  • d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

l=πa, где

  • π — математическая константа, равная 3,14
  • a — сторона квадрата

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

где:

  • π — математическая константа, она всегда равна 3,14
  • a — первая сторона треугольника
  • b — вторая сторона треугольника
  • c — третья сторона треугольника
  • S — площадь треугольника

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.
Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

где:

  • π — математическая константа, равная 3,14
  • S — площадь треугольника
  • p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.
Формула вычисления длины окружности:

где:

  • π — математическая константа, равная 3,14
  • a — сторона многоугольника
  • N — количество сторон многоугольника

Ответ

Проверено экспертом

Центр вписанной окружности в равносторонний треугольник лежит на высоте (биссектрисе и медиане) и делит её в отношении 2/1 считая от вершины. ⇒ высота (7+7*2)=21 ед.

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание! Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера»

Равносторонний треугольник — треугольник, у которого все стороны равны.

Какие же особенные свойства присущи равностороннему треугольнику?

Равносторонний треугольник. Свойства

Свойство 1. В равностороннем треугольнике все углы равны между собой и равны .

Естественно, не правда ли? Три одинаковых угла, в сумме , значит, каждый по .

Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).

Почему так? А посмотрим-ка на равносторонний треугольник:

Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.

Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром! В равностороннем треугольнике оказалось не особенных линий, как во всяком обычном треугольнике, а всего три!

  Посоветуйте интересную книгу форум

Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.
Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной.

Уже должно быть очевидно, отчего так.

Посмотри на рисунок: точка – центр треугольника. Значит, – радиус описанной окружности (обозначили его ), а – радиус вписанной окружности (обозначим ).

Но ведь точка – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении , считая от вершины.

Поэтому , то есть .

Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.

Давай удостоверимся в этом.

Рассмотрим – он прямоугольный.

Равносторонний треугольник. Радиус описанной окружности

Мы уже выяснили, что точка – не только центр описанной окружности, но и точка пересечения медиан. Значит, .

Величину мы уже находили. Теперь подставляем:

Равносторонний треугольник. Радиус вписанной окружности

Это уже теперь должно быть совсем ясно

Ну вот, все основные сведения обсудили. Конечно, можно задавать сотни вопросов про всякие длины всяких отрезков в равностороннем треугольнике.

Но главное, что следует иметь в виду, решая задачки о равностороннем треугольнике, – это то, что все его углы известны – равны и все высоты являются и биссектрисами, и медианами, и серединными перпендикулярами.

Равносторонний треугольник. краткое изложение и основные формулы

Равносторонний треугольник — треугольник, у которого все стороны равны: .

  • В равностороннем треугольнике каждая медиана совпадает с биссектрисой и высотой, которые проведены из той же вершины
  • Точки пересечения высот, биссектрис, медиан и серединных перпендикуляров равностороннего треугольника совпадают.

  С чем можно поесть сгущенку

  • Центры вписанной и описанной окружностей равностороннего треугольника совпадают: точка .
  • В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной: .

В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны :

  • Высота=медиане=биссектрисе :
  • Радиус описанной окружности :
  • Радиус вписанной окружности :
  • Площадь :
  • Периметр :

Получить доступ к учебнику YouClever без ограничений можно кликнув по этой ссылке:

Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника.

  • Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности:
  • Площадь треугольника равна произведению ПЕРИМЕТРА на радиус!
  • Площадь треугольника равна произведению ПОЛУПЕРИМЕТРА на радиус вписанной окружности

Площадь треугольника равна 24, а радиус вписанной окружности равен 2. Найдите периметр этого треугольника.

Из формулы , где p — полупериметр, находим, что периметр описанного многоугольника равен отношению удвоенной площади к радиусу вписанной окружности:

Равносторонний треугольник вписан в окружность найти радиус Ссылка на основную публикацию

Формула площади правильного многоугольника через радиус описанной окружности:

Пусть S – площадь правильного многоугольника, R – радиус описанной окружности (окружности, которая проходит через все вершины многоугольника), n – число сторон многоугольника. Тогда формула для вычисления площади будет:

S = ((n * R2 ) / 2) * (sin(360°/n))

или эквивалентно:

S = (n * R2 * sin(360°/n)) / 2

Эти формулы предоставляют различные подходы для вычисления площади правильного многоугольника, основанные на различных характеристиках фигуры. Выбор подходящей формулы зависит от имеющихся данных и удобства использования.

Площадь правильного многоугольника является важной характеристикой этой фигуры и находит свое применение в различных областях науки, инженерии, архитектуре, геодезии и других дисциплинах. Этот параметр помогает нам лучше понять и анализировать геометрические структуры, а также применять полученные знания в практических ситуациях

Выбирая подходящую формулу для вычисления площади правильного многоугольника, мы можем более эффективно и точно решать различные задачи и проблемы, связанные с этими геометрическими фигурами.

Формулы для правильного многоугольника

Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка. Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.

Оказывается, все эти величины взаимосвязаны друг с другом. Ранее мы уже получили формулу

для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.

Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:

Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:

С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).

Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.

Решение. Запишем следующую формулу:

Это равенство как раз и надо было доказать в этом задании.

Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.

Решение. Запишем формулу:

Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.

Найдем периметр шестиугольника:

Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?

Решение. Зная периметр треуг-ка, легко найдем и его сторону:

Далее вычисляется радиус описанной около треугольника окружности:

Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?

Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:

Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:

Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:

В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:

Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:

∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:

AH = AC/2 = 17/2 = 8,5 мм

Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:

Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.

Длина стороны правильного многоугольника

Определение длины стороны правильного многоугольника по радиусу вписанной окружности

От нашего нового пользователя поступил вот такой запрос: «Калькулятор должен вычислять длину стороны правильного многоугольника (шестиугольник, пятигольник) по указанному диаметру (или радиусу) описанной окружности».

Удовлетворяем запрос оперативно. Заметим, что для решения задачи нужно найти длину третьей стороны треугольника, исходящего из центра описанной окружности и опирающегося на две соседние вершины правильного многоугольника. Про этот треугольник известно многое: длины двух сторон — это радиусы описанной окружности, и угол, как нетрудно заметить, — это 360, деленное на число вершин правильного многоугольника. Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально. Результат — ниже.

Формулы правильного n-угольника

Формулы длины стороны правильного n-угольника

a = 2 · r · tg 180° n (через градусы),

a = 2 · r · tg π n (через радианы)

Формула стороны правильного n-угольника через радиус описанной окружности

a = 2 · R · sin 180° n (через градусы),

a = 2 · R · sin π n (через радианы)

Формулы радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны

r = a : 2 · tg 180° n (через градусы),

r = a : 2 · tg π n (через радианы)

Формула радиуса описанной окружности правильного n-угольника

R = a : 2 · sin 180° n (через градусы),

R = a : 2 · sin π n (через радианы)

Формулы площади правильного n-угольника

Формула периметра правильного n-угольника

Периметр правильного n-угольника равен произведению длины одной стороны правильного n-угольника на количество его сторон.

Примеры применения формулы в задачах

Пример 1: Дан восьмиугольник с вписанной окружностью радиусом 5 см. Найдите длину одной стороны восьмиугольника.

Решение:

Так как окружность вписана в восьмиугольник, то радиус окружности является расстоянием от центра восьмиугольника до середины стороны. Так как восьмиугольник имеет восемь равных сторон, то мы можем разделить его на восемь равных треугольников, где каждый треугольник имеет площадь: Sтр = (p/2) * r, где p — периметр треугольника, r — радиус вписанной окружности. Тогда для всего восьмиугольника длина одной стороны будет равна: a = 2 * r * Sin(π/8) = 2 * 5 * Sin(π/8) ≈ 6,14 см.

Пример 2: В треугольнике ABC вписана окружность радиуса 4 см. Найдите значение угла А при условии, что AC = 10 см и BC = 8 см.

Решение:

Обозначим за x значение угла А. Так как окружность вписана в треугольник, то высота треугольника, проведенная к стороне АС, является радиусом вписанной окружности. Тогда, зная, что высота равна (b*c*Sin(x))/2, где b и c — соответствующие стороны треугольника, можем составить уравнение: 4 = (8*10*Sin(x))/20. Отсюда получим Sin(x) = 1/5. Так как угол А меньше π/2, то он будет острым, а значит Sin(x) = BC/AC. Из этого следует, что угол А = 53,13 градусов.

Пример 3: Дан пятиугольник, вписанный в окружность радиуса 7 м. Найдите площадь пятиугольника, если одна из его сторон равна 8 м.

Решение:

Так как пятиугольник вписан в окружность, то мы можем разделить его на пять равных треугольников, где каждый треугольник имеет площадь: Sтр = (p/2) * r, где p — периметр треугольника, r — радиус вписанной окружности. Так как одна из сторон пятиугольника равна 8 м, то периметр одного треугольника будет равен 5 * 8 = 40 м. Тогда площадь одного треугольника будет равна: Sтр = (40/2) * 7 = 140 м2. Так как пятиугольник состоит из пяти таких треугольников, то его площадь будет равна: 700 м2.

Заключение:

Правильные многоугольники – это уникальные и интересные геометрические фигуры, которые обладают рядом удивительных свойств и интересных фактов. Вот несколько полезных и интересных фактов о правильных многоугольниках и связанных с ними формулах:

  1. Определение правильного многоугольника: Правильный многоугольник – это многоугольник, у которого все стороны равны, и все углы равны. Примеры правильных многоугольников – правильные треугольники, квадраты, пятиугольники (пентагоны), шестиугольники (гексагоны) и т. д.
  2. Число сторон и углов: У правильного n-угольника всегда n сторон и n углов.
  3. Сумма углов: Сумма всех внутренних углов в правильном n-угольнике равна (n-2) * 180°.
  4. Центральный угол: У правильного n-угольника каждый угол в центре многоугольника равен 360°/n.
  5. Формула для площади через длину стороны: Площадь правильного n-угольника можно вычислить, зная длину его стороны (a) и число сторон (n), используя формулу: S = (n * a^2) / (4 * ctg(180°/n)), где ctg – котангенс.
  6. Формула для площади через радиус вписанной окружности: Площадь правильного n-угольника можно также вычислить, зная радиус вписанной окружности (r) и число сторон (n), используя формулу: S = (n * r^2 * tg(180°/n)) / 2, где tg – тангенс.
  7. Формула для площади через радиус описанной окружности: Площадь правильного n-угольника можно вычислить, зная радиус описанной окружности (R) и число сторон (n), используя формулу: S = (n * R^2 * sin(360°/n)) / 2, где sin – синус.
  8. Симметрия: Правильные многоугольники обладают высокой степенью симметрии. Они имеют ось симметрии, проходящую через центр многоугольника и центр каждой стороны.
  9. Применение в архитектуре и дизайне: Правильные многоугольники часто используются в архитектуре и дизайне, так как они обладают эстетичными и гармоничными формами.
  10. Связь с окружностями: Правильные многоугольники можно вписать и описать около окружностей. Вписанные окружности касаются всех сторон многоугольника, а описанные окружности проходят через все вершины многоугольника.

Правильные многоугольники – это не только важные геометрические фигуры, но и основа для понимания многих других математических концепций. Они также имеют много применений в различных областях науки и техники.

#Калькуляторы#Математика#Площадь

Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: