Кем и когда была изобретена первая аналитическая машина

Введение

В жизни мы иногда боремся с воплощением великой идеи. Может быть, это так же просто, как небольшой домашний проект, или, возможно, это что-то настолько грандиозное, что изменит мир. Англичанин Чарльз Бэббидж был человеком, который боролся как таковой, поскольку его грандиозное видение состояло в том, чтобы построить механическую вычислительную машину, которая избавит от утомительной работы и ошибок математических вычислений, которые были так необходимы для перехода Великобритании к индустриальной экономике. Хотя большую часть своей взрослой жизни он работал над созданием различных версий вычислительной машины, он умер, не доведя проект до конца. Идеи, лежащие в основе его вычислительных машин, были предшественниками современного компьютера. Чарльз Бэббидж родился на столетие раньше срока.

Аналитическая машина

Из-за нехватки денег и свободного времени Бэббидж в 1834 году разработал план создания более совершенной машины, которая позже была названа Аналитической машиной. Эта новая конструкция, в отличие от более ранней разностной машины, которая предназначалась для выполнения вычислений и вывода результатов в таблицу, была фактически программируемым калькулятором, который мог принимать инструкции, подаваемые в машину, с помощью серии перфокарт. Эта конструкция соответствует схеме, разработанной во Франции для ткацких станков Jacquard. В случае с ткацким станком входные карты сообщали ткацкому станку, какой узор создать на ткани — цветок, геометрический рисунок и т. Д. Аналитическая машина должна была иметь возможность распечатывать результаты в различных формах и имела много важнейших функций современных цифровых компьютеров. У Engine был «магазин», где можно было хранить числа и промежуточные результаты,и область для арифметической обработки, называемая «мельница». Он мог выполнять четыре основные арифметические функции и мог выполнять прямое умножение и деление. У него также было множество способов вывода результатов вычислений.

Когда Бэббидж впервые начал искать средства для аналитической машины, он был удивлен, обнаружив, что стал объектом критики и насмешек. Разностная машина провалилась, и его коллеги-ученые, особенно его соперники, заявили, что проект невозможен. Правительство отказалось предоставить деньги, но он нашел финансирование от частных лиц, а именно от герцога Веллингтона. Однако Бэббиджу не хватало денег и технических навыков, чтобы построить машину.

Ада Лавлейс.

Мельница вычислений

После попадания чисел в мельницу начинается главная часть работы Машины — арифметические действия, выполняемые снова и снова.

Бэббиджем были разработаны отдельные узлы сложения, вычитания, умножения и деления, а также один из любимых его механизмов — перенос с предварением.

В своих публикациях Бэббидж очеловечивал Машину и про «сквозной перенос» писал:

Конечно, до переноса числа необходимо было сложить, и происходило это примерно так:

Колесо А обнуляется и на нем задается первое число. Второе число задается на колесе В, которое в сцепке с колесом А. Обнуление первого колеса прибавляет число, которое там содержалось, к значению на колесе В.

Возьмем для примера:

Вспомним школьную арифметику, а именно сложение в столбик и перенос единиц. Если расположить цифры обоих чисел по столбцам, как это сделано в Машине, и складывать их по разрядам, то в первом случае не будет переноса, во втором будет перенесена единица, а в третьем сумма будет равна 9, но перенесенная ранее единица инициирует перенос.

Когда Разностная машина работает, можно наблюдать волнообразные движения рычажков переноса в задней части Машины. Волны происходят из-за последовательных переносов единиц снизу вверх с проверкой инициации новых переносов.

Эта штука переносит единицу снизу вверх по одной!

Линейки, таблицы и монограммы

Сложные расчеты потребовались в xvii веке. Это время, когда необходимость сложных математических операций стала жизненно важна. Возникла потребность в работе с многозначными числами.

В период с 1614 по 1623 в свет вышли совершенно новые типы вычислителей:

  • логарифмическая линейка;
  • логарифмические таблицы;
  • возникновение механических арифмометров;
  • палочки Непера.

В 19 веке, взяв за основу логарифмы и логарифмические линейки появился их графический аналог – номограммы. Они использовались для проведения расчетом совершенно разных функций.

Логарифмические таблички

В 1614 мир узнал определение логарифмов и их значения. Непер решил заменить сложное умножение на простое сложение. Для этого он при помощи спецтаблиц сопоставил геометрические и арифметические прогрессии. Первая считалась исходной. Деление в этом случае автоматические заменяется на более простое и понятное человеку вычитание.

Логарифмические таблицы расширялись и уточнялись другими математиками. Задействованы в научных и инженерных решениях более трех веков. Не выходили из «моды» до изобретения компьютеров и современных калькуляторов.

Линейки

Стоит обратить внимание и на такой элемент, как логарифмическая линейка. Создается путем нанесения соответствующей шкалы

Это – один из механических вычислителей.

Приближенная к упомянутой конструкции теорию предложил астроном Эдмунд Гюнтер в начале 17 века. Он сказал, что можно на линейку нанести логарифмическую шкалу, а затем посредством двух циркулей складывать и вычитать их.

Но в 1622 Уильям Отред опубликовал усовершенствованную логарифмическую линейку в «Кругах пропорций». Она была:

  • круговой – при первом выпуске;
  • прямоугольной – после 1633.

Далее устройство делали более совершенным. Для этого создавали «движки», разметки по обе стороны, добавляли шкалы Уингейта, отмечали часто задействованные числа. В середине 19 века «девайс» оснастили бегунком.

Использовали такие линеечки несколько поколений инженеров и других мастеров. На их базе созданы следующие вычислители:

  • артиллерийская линейка;
  • линейка Дробышева;
  • навигационная;
  • кардиологическая;
  • офицерская.

А еще появились навигационные расчетчики. Логарифмические линейки в будущем заменили карманные, привычные современному человеку калькуляторы.

Номограммы

С развитием рассматриваемых машин в мире появлялись разные приспособления для проведения тех или иных подсчетов. Пример – номограммы. Это – простейшие вычислители. Для них требуется:

  • шкала;
  • линейка (координатная сетка тоже годится);
  • циркуль.

Дополнительные вспомогательные элементы обычно не задействованы. Результаты просматриваются визуально, после чего фиксируются на бумаге. Для умножения и деления наносится логарифмическая шкала рядом с обычной, после – используется циркуль. Так получают вычислитель.

Теория номографических построений разработана французский математиком Лаланном в 1843. Она опирается на теории Оканя, который впервые внедрил понятие «номограмма». В России с соответствующей темой впервые работал Герсеванов, после – Глаголев. Он создал первую советскую номографическую школу.

Арифмометры

Плоды человеческих трудов должны быть зафиксированы в истории. Так, развивая механику и прочие науки, люди научились создавать вычислительные устройства различной сложности. В 1623 Вильгельм Шиккард разработал первый арифмометр – «Считающие часы». Он умел выполнял всего 4 математических действия. Работало приспособление за счет звездочек и шестеренок.

Далее появились машины Паскаля и Лейбница. Последний раскрыл человечеству, что такое двоичная система счисления. На ней основаны современные компьютеры. Но до 1940-х многие разработки (включая те, что делал французский учены Чарльз Бэббидж) основывались на сложной в реализации десятичной системе.

В 1820 появилась новая вещь для вычислений. Она получила название арифмометра Томаса. Умела:

  • вычитать;
  • делить;
  • умножать;
  • складывать.

В 1945 Штаффель воссоздал счетную машину, которая дополнительно вычисляла квадратные корни. Арифмометры, которые начали считать десятичные числа, применялись на практике до 1970.

Личная жизнь

25 июля 1814 года в тинмутской церкви Святого Михаила Чарльз Бэббидж сочетался браком с Джорджианой Уитмор. Вначале пара жила в Шропшире, затем в 1815 году переехала на Девоншир-стрит в Лондон.

В браке у Чарльза и Джорджианы родились 8 детей, однако младенчество пережили только четверо — Бенджамин, Джорджиана, Дугалд и Генри. Самым трудным периодом в личной жизни Чарльза стал 1827 год, тогда умерли отец, жена и двое сыновей ученого.

Интересный факт: за заслуги Бэббиджу предлагали как баронский, так и рыцарский титулы, однако из-за своих политических воззрений он отказался и от того, и от другого.

В чем отличие аналитической машины от арифмометра

К 1834 г. арифмометр уже был изобретен. Аналитическая машина отличалась от него наличием регистров, что позволяло ей работать по программе, предварительно составленной человеком. В регистрах сохранялся промежуточный результат вычисления, и с их же помощью выполнялись действия, предписанные «программой».

Изобретение регистров предоставляло такие вычислительные возможности, которые поразили Бэббиджа по сравнению с его первой разностной машиной: «Шесть месяцев я составлял проект машины, более совершенной, чем первая. Я сам поражен той вычислительной мощностью, которой она будет обладать; еще год назад я не смог бы в это поверить».

Как уже отмечалось, в единую логическую схему Бэббидж увязал арифметическое устройство («мельница»), регистры памяти, объединенные в единое целое («склад»), и третье устройство, которому автор не дал названия. Оно было реализовано с помощью перфокарт трёх типов:

  1. операционные карты (англ. operation card) служили для переключения машины между режимами сложения, вычитания, деления и умножения;
  2. карты переменных (англ. variable card) управляли передачей информации со «склада» на «мельницу» и обратно;
  3. числовые перфокарты могли быть использованы для ввода данных в машину, а также для сохранения промежуточных результатов вычислений, если место на «складе» было ограничено.

Кроме того, из операционных карт можно было составить библиотеку функций. По замыслу автора аналитическая машина должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования. Таким образом, именно Бэббидж стал автором идеи ввода-вывода данных в машину.

Аналитическая машина не была построена

Изобретатель писал в 1851 г.: «Все разработки, связанные с Analytical Engine, выполнены за мой счет. Я провел целый ряд экспериментов и дошел до черты, за которой моих возможностей не хватает. В связи с этим я вынужден отказаться от дальнейшей работы».

Бэббидж сделал более 200 чертежей ее различных узлов и около 30 вариантов общей компоновки машины. Очевидно, что изобретатель намного опередил свое время. Не случайно в конце жизни он скажет: «Я готов отдать последние годы своей жизни за то, чтобы прожить три дня через 150 лет, и чтобы мне подробно объяснили принцип работы будущих машин».

Статья закончилась, но можно еще прочитать:

Аналитическая машина

Когда работа над разностным аппаратом застопорилась, в 1834 году Бэббидж задумал более амбициозное устройство, которое позже получило название аналитического универсального программируемого вычислительного механизма. Структурные свойства машины Бэббиджа во многом соответствуют основным блокам современного цифрового компьютера. Программирование производится с помощью перфокарт. Эта идея была заимствована у жаккардового ткацкого станка, где они служат для создания сложных текстильных узоров.

Логическая структура аналитической машины Бэббиджа в основном соответствует доминирующему дизайну компьютеров электронной эры, который подразумевает наличие памяти («магазина»), отделенной от центрального процессора («мельницы»), последовательное выполнение операций и средства для ввода и вывода данных и инструкций. Поэтому звание пионера вычислительной техники автор разработки получил вполне заслуженно.

Предыстория создания аналитической машины.

Тут стоит вспомнить что на конец восемнадцатого — начало девятнадцатого века пришёлся пик промышленной революции. Переход от ручного труда к промышленным масштабам сопровождался, так сказать, бурным ростом других секторов экономики. Росло банковское и страховое дело, увеличивался объём морских перевозок, строительства — всё это требовало большого количества вычислений — расчёт сложных процентов, вычисление географических координат, инженерных расчётов и т.п. Уже в восемнадцатом веке мореходами активно использовались различные таблицы.

Интересный и одновременно с этим трагичный случай показывает, к чему могут привести подобные ошибки. После окончания Англо-Испанской войны в средиземном море встретились Английское и Испанское суда. Свежеиспечёные друзья решили оказать друг другу знаки почтения и обменятся подарками. На счастье Английского капитана, его Испанский коллега решил преподнести ему лишь серебряный поднос. А вот Испанскому капитану повезло меньше — Англичанин преподнёс ему, без всякого злого умысла, навигационные таблицы Томаса Юнга. Издание было высочайшего качества, однако таблицы были совершенно не верными, так как не учитывали високосных годов. Испанского капитана, принявшего такой дар, больше никто никогда не видел, а вот Английский капитан прекрасно добрался до места назначения, используя французские и итальянские таблицы.

Главная пробелма была в том, что в конце 18го века был предложен оригинальный способ организации вычислительного труда, повышающий надежность вычислений. Его автором был математик Гаспар Клэр Франсуа маркиз де Прони. Вычисления были организованны по «конвеерной системе» состоящей из трёх групп. Первая, наиболее малочисленная, наиболее квалифицированная состояла из 5-6 математиков. Она занималось выбором формул и составлением схем расчётов. Вторая из 7-8 математиков по выбранным формулам определяла значения функций с шагом 5-6 интервалов. Третья же, наиболее многочисленная, состояла из девяноста вычислителей низкой квалификации, которые занимались уплотнением таблицы, заполняя интервалы, вычисленные на предыдущем этапе. Две группы вычислителей работали параллельно, сверяя свои результаты. 

Бэббидж заинтересовался данной схемой и у него родилась идея заменить последний этап ручных вычислений, механической машиной, которая позволяла бы автоматизировать, как он писал «самые примитивные действия человеческого интеллекта».

Машины, способные производить простые операции сложения, вычитания и даже умножения к тому времени создавались уже не первый век различными математиками и механиками, хотя большого распространения на тот момент не получили. Бэббидж же задумал не просто «механические счёты»

У него родилась идея специализированного вычислительного устройства, заточенного под создание таблиц, позволявшего вычислять их быстро, эффективно, требовавших невысокой квалификации персонала, а также (что немаловажно) позволявших фиксировать результаты проведённых вычислений на бумаге. Для второго десятилетия девятнадцатого века это была весьма смелая задумка

Однако даже сам Бэббидж ещё не догадывался как далеко его заведёт, родившаяся в его голове в 1812-м году идея.

Память: склад

Любому компьютеру, паровому или электронному, необходима возможность хранения данных. В изобретении Бэббиджа он назывался складом, и, как практически вся машина, он состоял из зубчатых колес, расположенных в высоких столбцах. На каждом из столбцов хранилось только одно число не длиннее пятидесяти цифр, а верхнее колесо определяло положительно число или отрицательно.

На чертежах Бэббиджа склад состоял из двух параллельных рядов высоких числовых столбцов, и в каждом из них хранилось одно число. Одна из сторон склада сообщалась с мельницей.

Кроме зубчатых колес числа могли храниться на числовых картах в виде комбинаций отверстий:

Новая конструкция

Новаторскую работу над аналитической машиной Бэббидж в основном завершил к 1840 г. и начал разрабатывать новое устройство. В период с 1847 по 1849 год он закончил разработку разностной машины №2, представлявшей собой улучшенную версию оригинала. Эта модификация была рассчитана на операции с 31-разрядными числами и могла привести в табличную форму любой полином 7-го порядка. Дизайн был изящно простым и требовал лишь третью часть от количества деталей первоначальной модели, обеспечивая равную с ней вычислительную мощность.

В разностной и аналитической машинах Чарльза Бэббиджа использовалась одна и та же конструкция устройства вывода, которое не только делало распечатку на бумаге, но и автоматически создавало стереотипы и самостоятельно производило форматирование согласно заданному оператором макету страницы. При этом предусматривалась возможность настройки высоты строки, числа столбцов, ширины полей, обеспечивались автоматическое сворачивание строк или столбцов и расстановка пустых строк для удобства чтения.

Сравнение с другими ранними компьютерами

Если бы аналитическая машина была построена, она была бы цифровой, программируемой и полной по Тьюрингу. Однако это было бы очень медленно. Луиджи Федерико Менабреа писал в «Наброске аналитической машины»: «Г-н Бэббидж считает, что он может с помощью своей машины образовать произведение двух чисел, каждое из которых состоит из двадцати цифр, за три минуты». Для сравнения: Harvard Mark I мог выполнить ту же задачу всего за шесть секунд. Современный ПК может сделать то же самое менее чем за миллиардную долю секунды.

Имя Первый рабочий Система счисления Вычислительный механизм Программирование Тьюринг завершен Память
Разностный механизм Нет выпускался до 1990-х годов Десятичный Механический Не программируемый; начальные числовые константы полиномиальных разностей, установленные физически Нет Физическое состояние колес в осях
Аналитическая машина Еще не построена Десятичная Механическая Управляется программой с помощью перфокарт Да Физическое состояние колес в осях
Bombe (Польша, Великобритания, США) 1939 (Польский ), март 1940 г. (Великобритания), май 1943 г. (США) Вычисления символов Электромеханические Непрограммируемые; настройки ввода шифрования, задаваемые соединительными кабелями Нет Физическое состояние роторов
Zuse Z3 (Германия) Май 1941 Двоичный с плавающей точкой Электромеханические Управляется программой с помощью перфорированной 35-мм пленки приклада Механические реле
Atanasoff – Berry Computer (США) 1942 Двоичный Электронный Непрограммируемый; ввод коэффициентов линейной системы с помощью перфокарт Регенеративная конденсаторная память
Colossus Mark 1 (UK) декабрь 1943 г. двоичный Электронный Программно-управляемый с помощью соединительных кабелей и переключателей Термоэмиссионные клапаны (вакуумные трубки) и тиратроны
Harvard Mark I — IBM ASCC (США) Май 1944 г. Десятичный Электромеханический Управляется программой с помощью 24-канальной перфоленты. (но без условного перехода) Нет Механические реле
Zuse Z4 (Германия) март 1945 (или 1948) Двоичная с плавающей запятой Электромеханический Программно-управляемый с помощью перфорированной 35-мм пленки Да Механический реле
ENIAC (США) июль 1946 г. десятичное электронное программное управление с помощью соединительных кабелей и переключателей Да Триод на электронных лампах триггеры
Manchester Baby (Великобритания) 194 8 Двоичная Электронная Двоичная программа, вводимая в память с клавиатуры (первый электронный цифровой компьютер с хранимой программой) Да Электронно-лучевой анализатор Вильямса tube

Больше чем калькулятор

Разностная машина Бэббиджа представляет собой счетное устройство. Она оперирует числами единственным способом, на который способна, постоянно складывая их в соответствии с методом конечных разностей. Ее нельзя использовать для общих арифметических расчетов. Аналитическая же машина Бэббиджа гораздо больше, чем просто калькулятор. Она знаменует переход от механизированной арифметики к полномасштабным вычислениям общего назначения. На разных этапах эволюции идей Бэббиджа насчитывалось по меньшей мере 3 проекта. Поэтому на его аналитические машины лучше ссылаться во множественном числе.

История

Карты, которые Бэббидж использует в своей аналитической машине. Карточки с инструкциями впереди, карточки данных сзади.

Аналитическая машина была не первой попыткой Бэббиджа, который уже изобрел машину разностей, заказанную британским правительством для создания безошибочных расчетных таблиц . Эта разностная машина была частично построена с 1822 по 1833 год Джозефом Клементом , одним из лучших британских мастеров своего времени.

Бэббидж начал разработку своей аналитической машины в 1834 году, понимая, что он может упростить свою разностную машину с помощью этой новой программируемой машины. Английский парламент отказался от этой смены руководства и официально прекратил финансовую поддержку в 1842 году. Машина так и не была завершена. Сегодня считается, что вся машина представляла бы собой клубок из колес и шестерен, приводимых в движение паром, и занимал бы место локомотива .

Бэббидж использовал принципы , обнаруженные при разработке аналитической машины , чтобы создать разность мейкер п уплотнительных  2 , который был построен только через сто лет, что подтверждает правильность своих взглядов.

Младший сын Бэббиджа разработал часть аналитической машины, чтобы доказать правильность идей своего отца. Он начал в 1880 году, но сдался в 1888 году из-за ошибки вычисления во время демонстрации вычисления и печати таблицы первых сорока кратных числа π с двадцатью девятью десятичными знаками. Он возобновил разработку в 1906 году и успешно продемонстрировал этот расчет Королевской английской академии астрономии. Генри Бэббидж подарил эту машину Музею науки в Лондоне в 1910 году.

Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: