Линейное уравнение с одной переменной с примерами решения

Линейные уравнения: определение и решение

Квадратные уравнения

Кроме рассмотренных ранее примеров, существуют и другие. Какие именно? Квадратное уравнение, что такое? Они имеют вид ax2+bx+c=0. Для их решения необходимо ознакомиться с некоторыми понятиями и правилами.

Во-первых, нужно найти дискриминант по формуле: b2-4ac. Есть три варианта исхода решения:

  • дискриминант больше нуля;
  • меньше нуля;
  • равен нулю.

В первом варианте мы можем получить ответ из двух корней, которые находятся по формуле: -b+-корень из дискриминанта разделенные на удвоенный первый коэфициент, то есть 2а.

Во втором случае корней у уравнения нет. В третьем случае корень находится по формуле: -b/2а.

Рассмотрим пример квадратного уравнения для более подробного знакомства: три икс в квадрате минус четырнадцать икс минус пять равняется нулю. Для начала, как и писалось ранее, ищем дискриминант, в нашем случае он равен 256. Отметим, что полученное число больше нуля, следовательно, мы должны получить ответ состоящих из двух корней. Подставляем полученный дискриминант в формулу нахождения корней. В результате мы имеем: икс равняется пяти и минус одной третьей.

Примеры решения

На ЕГЭ могут быть различные задания по математике. Среди них могут быть линейные и квадратные уравнения. Например, дано выражение вида: 3 (х-9) + 2х (х-3)= 2 (х-2)(х+2). Нужно найти значение переменной. Алгоритм следующий:

  1. Раскрыть скобки: 3х — 27 + 2х 2 — 6x = 2x 2 — 8.
  2. Привести подобные слагаемые: -3х = 18.
  3. Найти корень: х = — 6.

Нет смысла находить точки пересечения двух парабол (x 2 — 3x + 2 = 0 и y 2 — 5y + 6 = 0) с осями координат. Для получения быстрого результата достаточно воспользоваться теоремой Виета. Точки пересечения вычисляются следующим образом: x1 = 1, x2 = 2, y1 = 2 и y2 = 3.

Чтобы найти точки пересечения параболы (3x 2 — 10x + 5 = 0) с осями декартовой системы координат, следует решить квадратное уравнение:

  1. Найти дискриминант: D = (-b)^2 — 4AC = 100 — 4 * 3 * 5 = 100 — 60 = 40 > 0.
  2. Первый корень: x1 = / (2 * A) = / (2 * 3) = (5 — sqrt (10)) / 3.
  3. Второй: x2 = (5 + sqrt (10)) / 3.

Парабола пересекает ось ОХ в точках x1 = (5 — sqrt (10)) / 3 и x2 = (5 + sqrt (10)) / 3. Выражения можно не вычислять, поскольку получатся приближенные значения.

Таким образом, для нахождения корней уравнения необходимо сначала его идентифицировать, привести к упрощенному виду, понизить степень (при необходимости), а затем применить какой-либо из алгоритмов.

Определение уравнения

Что такое уравнение? Это некое тождество, в одной из частей которого есть не только численные, но и буквенные значения.

Тождество – это два выражения, соединенных знаком равно.

$$18=9*2$$

Отдельно стоит сказать о том, что такое буквенное обозначение чисел. Противовесом ему служит цифровое выражение, то есть запись цифр числами. В таком случае мы всегда знаем, что 3 – это три, 5 – это пять и т.д. Если число обозначается буквой, то под ней может скрываться любое значение. Именно в поиске таких значений и состоит решение уравнений.

Решить уравнение значит найти такое значение х, или любого другого неизвестного, при котором равенство сохранится.

Равносильные уравнения

Уравнения, имеющие одни и те же корни, называются равносильными.

Например: и . У обоих уравнений решением является число два, т.е. .

Основные равносильные преобразования уравнений:

1. Перенос какого-то слагаемого из одной части уравнений в другую с изменением его знака на противоположный.

Например: 3x + 7 = 5 равносильно .

2. Умножение/разделение обеих частей уравнения на одно и то же число, не равное нулю.

Например: 4x – 7 = 17 равносильно .

Уравнение, также, не изменится, если к обеим его частям прибавить/отнять одно и то же число.

3. Приведение подобных слагаемых.

Например: 2x + 5x – 6 + 2 = 14 равносильно .

Корень уравнения

Допустим, у нас есть уравнение.

Оно обращается в верное равенство при. Это значение (число) и является Корнем уравнения.

Решить уравнение – это значит найти его корень или корни (в зависимости от количества переменных), либо доказать, что их нет.

Обычно, корень пишется так: . Если корней несколько, они просто перечисляются через запятую, например: , .

Примечания:

1. Некоторые уравнения могут быть не решаемы.

Например: . Какое бы мы число не подставили вместо x, получить верное равенство не получится. В этом случае в ответе пишется: “уравнение не имеет корней”.

2. Некоторые уравнения имеют бесконечное множество корней.

Например: . В данном случае решением является любое число, т. е. , , , где N, Z и R – это натуральные, целые и действительные числа, соответственно.

Уравнения сводящиеся к квадратному

В данном пункте научимся решать более сложные уравнения. Начнем сразу с примера:

(x2 – 2x)2 – 2(x2 – 2x) – 3 = 0. Можем заметить повторяющиеся элементы: (x2 – 2x), нам для решения удобно заменить его на другую переменную, а далее решать обычное квадратное уравнение, сразу отмечаем, что в таком задании мы получим четыре корня, это не должно вас пугать. Обозначаем повторение переменной а. Мы получаем: а2-2а-3=0. Наш следующий шаг — это нахождение дискриминанта нового уравнения. Мы получаем 16, находим два корня: минус один и три. Вспоминаем, что мы делали замену, подставляем эти значения, в итоге мы имеем уравнения: x2 – 2x=-1; x2 – 2x=3. Решаем их в первом ответ: х равен единице, во втором: х равен минусу одному и трем. Записываем ответ следующим образом: плюс/минус один и три. Как правило, ответ записывают в порядке возрастания.

Основные понятия уравнения

Определение

Уравнением называют равенство, в котором одна из переменных неизвестна, и её нужно найти. Значение этой неизвестной должно быть таким, чтобы равенство было верным.

К примеру: 3+4=7 это числовое равенство, при вычислении которого с левой стороны получается 7=7.

Уравнением же будет называться следующее равенство: 3+х=7, поскольку есть неизвестная переменная х, её значение можно найти.

Из этого уравнения следует, что переменная х=4, только при таком его значении равенство 3+х=7, будет верным.

Неизвестные переменные принято писать в виде маленьких латинских букв, можно любыми, но чаще используют x,y,z.

Получается, чтобы равенство сделать уравнением необходимо, чтобы в нем была буква, значение которой неизвестно.

Как мы понимаем существует множество примеров уравнений с разными арифметическими действиями.

Пример: х + 5 = 1= 9; z — 2 = 7; 9 * y = 18, 6 :  f = 2

Помимо этого существуют уравнения со скобками. К таким уравнениям относится 8 : (х — 4) = 2 * (8 — х), неизвестных может быть несколько, они могут быть, как слева уравнения, так и справа или в обеих частях.

Помимо таких простых уравнений они могут быть с корнями, логарифмами, степенями и тд. 

Уравнение может содержать несколько переменными, тогда их принято называть, соответственно уравнениями с двумя, тремя и более переменными.

Пример:

3 * а = 15 : х — уравнение с двумя переменными:

8 — а = 5 * х — z — уравнение с тремя переменными.

Решение неравенств

Решить неравенство с одной переменной — это значит, найти все значения этой переменной, при которых данное неравенство верно, или убедиться, что таких значений у переменной нет.

Все неравенства с одной переменной решаются одинаково с помощью преобразований, которые могут выполняться в любом порядке. Список возможных преобразований, которые могут быть использованы для решения неравенств:

  • освобождение от дробных членов,
  • раскрытие скобок,
  • перенос всех членов, содержащих переменную, в одну часть, а остальных – в другую (члены с переменными, как правило, переносят в левую часть неравенства),
  • приведение подобных членов,
  • деление обеих частей неравенства на коэффициент при переменной.

Пример 1.

8x
— 2 > 14

Решение:
Переносим -2 в правую часть:

8x
> 14 + 2

8x
> 16

Делим обе части неравенства на -8:

8x
: (-8)

x

Отмечаем множество значений x
на координатной прямой:

Ответ:
(-∞; -2)

Пример 2.
Решить неравенство и изобразить множество решений на координатной прямой:

6(y
+ 12) ⩾ 3(y
— 4)

Решение:
Сначала раскрываем скобки:

6y
+ 72 ⩾ 3y
— 12

Переносим 72 в правую часть, а 3y
в левую и делаем приведение подобных слагаемых :

6y
— 3y
⩾ -12 — 72

3y
⩾ -84

Делим обе части неравенства на коэффициент при неизвестном (на 3):

(3y
) : 3 ⩾ (- 84) : 3

y
⩾ -28

Отмечаем множество значений y
на координатной прямой:

Ответ:
[-28; +∞)

Линейными называются неравенства
левая и правая часть которых представляет собой линейные функции относительно неизвестной величины. К ним относятся, например, неравенства:

2х-1
-х+3; 7х
0;

5
>4 — 6x
9-
x .

1) Строгие неравенства: ax +b>0
либо ax + b

2) Нестрогие неравенства: ax +b≤0
либо ax + b

Разберем такое задание
. Одна из сторон параллелограмма составляет 7см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?

Пусть искомая сторона составит х
см. В таком случае периметр параллелограмма будет представлен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма. Если в этом неравенстве заменить переменную х
на, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.

Решением неравенства
называют значение переменной, которое обращает его в верное числовое неравенство.

Следовательно, каждое из чисел 15,1; 20;73 выступают решением неравенства 14 + 2х > 44, а число 10, например, не является его решением.

Решить неравенство
означает установить все его решения или доказать, что решений не существует.

Формулировка решения неравенства сходна с формулировкой корня уравнения. И все же не принято обозначать «корень неравенства».

Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.

Решая уравнение, мы меняем его другим, более простым уравнением, но равнозначным заданному. По схожей схеме находят ответ и неравенства. При смене уравнения на равнозначное ему уравнение пользуются теоремой о перенесении слагаемых из одной части уравнения в противоположную и об умножении обеих частей уравнения на одно и то же отличное от нуля число. При решении неравенства есть существенное различие его с уравнением, которое заключается в том, что всякое решение уравнения можно проверить просто подстановкой в исходное уравнение. В неравенствах такой способ отсутствует, так как бесчисленное множество решений подставить в исходное неравенство не представляется возможным

Поэтому есть важное понятие, вот эти стрелочки — это знак эквивалентных, или равносильных, преобразований. Преобразование называются равносильными,
или эквивалентными
, если они не изменяет множества решений

Как правильно пишется словосочетание «решение уравнения»

Делаем Карту слов лучше вместе

Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова диалектик (существительное):

Предложения со словосочетанием «решение уравнения&raquo

Это всего лишь две попытки найти решение уравнения, приписывая различные значения одной и той же неизвестной величине.

Значение словосочетания «решение уравнения&raquo

В математике, решение уравнения — это задача по нахождению таких значений аргументов (чисел, функций, наборов и т. д.), при которых выполняется равенство (выражения слева и справа от знака равенства становятся эквивалентными). Значения неизвестных переменных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Решить уравнение означает найти множество всех его решений (корней) или доказать, что корней нет. (Википедия)

Значение словосочетания «решение уравнения&raquo

В математике, решение уравнения — это задача по нахождению таких значений аргументов (чисел, функций, наборов и т. д.), при которых выполняется равенство (выражения слева и справа от знака равенства становятся эквивалентными). Значения неизвестных переменных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Решить уравнение означает найти множество всех его решений (корней) или доказать, что корней нет.

Предложения со словосочетанием «решение уравнения&raquo

Это всего лишь две попытки найти решение уравнения, приписывая различные значения одной и той же неизвестной величине.

Поэтому далее остановимся на изучении алгоритма решения уравнений регрессии с применением соответствующих вычислительных программ.

Для завершения описания нам придётся указать, какой вариант истории произошёл в действительности, предоставив достаточно дополнительных данных для выбора одного из многих решений уравнений движения.

Тождественные преобразования

Перенос влево-вправо

\( \displaystyle 15-2x=10+x\)Еще в начальной школе нам говорили: «с иксами – влево, без иксов – вправо». Какое выражение с иксом стоит справа? Правильно, \( \displaystyle -2x\), а не как не \( \displaystyle 2x\).

И это важно, так как при неправильном понимании этого, казалось бы простого вопроса, выходит неверный ответ. А какое выражение с иксом стоит слева? Правильно, \( \displaystyle +x\)

Теперь, когда мы с этим разобрались, переносим все слагаемые с неизвестными в левую сторону, а все, что известно – в правую, помня, что если перед числом нет никакого знака, например, \( \displaystyle 15\), то значит число положительно, то есть перед ним стоит знак «\( \displaystyle +\)».

Перенес? Что у тебя получилось?

\( \displaystyle -2{x}-x=10-15\)Все, что осталось сделать – привести подобные слагаемые. Приводим:

Классификация уравнений

Для решения каждого уравнения есть свои правила и алгоритмы. Различают следующие виды уравнений: алгебраические, с параметрами, трансцендентные, функциональные, дифференциальные и другие.

Некоторые виды позволяют записывать значение корня в виде функции или функции с параметром. Для решения применяются специальные аналитические функции, которые могут предоставить сведения о вычислении корней, а также предварительно определить их количество и зависимость от значения параметра. Однако аналитические решения можно применять только для алгебраического типа (не выше 4 степени).

Для трансцендентных уравнений количество аналитических решений ограничено, поскольку не все тригонометрические функции имеют значения, равные нулю. Если невозможно найти аналитическое решение, то применяются вычислительные методы. Они позволяют сузить интервал, в котором находится корень. Следовательно, такое решение не будет точным.

Равносильные уравнения

Уравнения, имеющие одни и те же корни, называются равносильными.

Например: x + 3 = 5 и 2x + 4 = 8. У обоих уравнений решением является число два, т.е. x = 2.

Основные равносильные преобразования уравнений:

1. Перенос какого-то слагаемого из одной части уравнений в другую с изменением его знака на противоположный.

Например: 3x + 7 = 5 равносильно 3x + 7 – 5 = 0.

2. Умножение/разделение обеих частей уравнения на одно и то же число, не равное нулю.

Например: 4x – 7 = 17 равносильно 8x – 14 = 34.

Уравнение, также, не изменится, если к обеим его частям прибавить/отнять одно и то же число.

3. Приведение подобных слагаемых.

Корень уравнения

Мы часто слышим фразу на уроках математики, «найдите корень уравнения», давайте разберёмся, что же это значит.

Пример:

В примере 3+х=7, можно представить вместо буквы число, и уравнение тогда станет равенством, оно может быть либо верным, либо неверным, если поставить х=3, то первичное равенство примет вид 3+3 = 7 и станет неверным, а если х= 4 то равенство 3+4=7 будет верным, а значит х = 4 будет называться корнем или по другому решением уравнения 3+х=7.

Определение.

Отсюда можно выделить следующее определение: корень уравнения — это такое значение неизвестной переменной, при котором числовое равенство будет верным.

Стоит отметить, что корней может быть несколько или не быть вовсе.

Рассмотрим подробнее пример который не будет иметь корней. Таким примером станет 0 * х = 7, сколько бы чисел мы сюда не подставляли равенство не будет верным, так как умножая на ноль будет ноль, а не 7.

Но существуют и уравнения с множественным числом корней, к примеру, х — 3 = 6, в таком уравнении только один корень 9, а в уравнении квадратного вида х2 = 16, два корня 4 и -4,  можно привести пример и с тремя корнями х * (х — 1) * (х — 2) = 0,  в данном случае три решения ноль, два и один.

Для того чтобы верно записать результат уравнения мы пишем так:

  • Если корня нет, пишем уравнение корней не имеет;
  • Если есть и их несколько, они либо прописываются через запятые, либо в фигурных скобках, например, так: {-2, 3, 5};
  • Еще одним вариантом написания корней, считается запись в виде простого равенства, к примеру неизвестная х а корни 3,5 тогда результат прописывается так: х=3, х=5. 
  • или прибавляя индекс снизух1 =3 , х2 = 5. данным способом указывается номер корня;
  • Если решений уравнения бесконечное множество, то запись будет либо в виде числового промежутка от и до, или общепринятыми обозначениями. множество натуральных чисел N, целых –  Z, действительных — R.

Стоит отметить, что если уравнение имеет два и более корней, то чаще употребляется понятие решение уравнения.  Рассмотрим определение уравнения с несколькими переменными.

Решение уравнения с двумя и более переменными, означает, что эти несколько значений превращают уравнение в верное равенство.

Примеры:

Представим, что мы имеем следующее уравнение х + а = 5, такое уравнение имеет две переменные. Если мы поставим вместо них числа 3 и 6 то равенство не будет верным, соответственно и данные числа не являются решением для данного примера.  А если взять числа 2 и 3 то равенство превратится в верное, а числа 2 и 3 будут решением уравнения. Представленные уравнения с несколькими переменными, тоже могут или не иметь корня вообще или наоборот иметь множество решений.

Корень уравнения

Допустим, у нас есть уравнение 2x + 6 = 16.

Оно обращается в верное равенство при x = 5. Это значение (число) и является корнем уравнения.

Решить уравнение – это значит найти его корень или корни (в зависимости от количества переменных), либо доказать, что их нет.

Обычно, корень пишется так: x = 3. Если корней несколько, они просто перечисляются через запятую, например: x1 = 2, x2 = -5.

Примечания:

1. Некоторые уравнения могут быть не решаемы.

Например: 0 · x = 7. Какое бы мы число не подставили вместо x, получить верное равенство не получится. В этом случае в ответе пишется: “уравнение не имеет корней”.

2. Некоторые уравнения имеют бесконечное множество корней.

Например: y = y. В данном случае решением является любое число, т.е. x ∈ R, x ∈ Z, x ∈ N, где N, Z и R – это натуральные, целые и действительные числа, соответственно.

Линейные уравнения — коротко о главном

Линейное уравнение

Это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна \( \displaystyle 1\).

Линейное уравнение с одной переменной имеет вид:

\( \displaystyle ax+b=0\), где \( \displaystyle a\) и \( \displaystyle b\) – любые числа \( \displaystyle a\ne 0\);

Линейное уравнение с двумя переменными имеет вид:

\( \displaystyle ax+by+c=0\), где \( \displaystyle a\), \( \displaystyle b\) и \( \displaystyle c\)– любые числа \( \displaystyle a\ne 0\).

Тождественные преобразования

Не всегда сразу можно определить, является ли уравнение линейным или нет. Иногда, чтобы понять это, необходимо произвести тождественные преобразования:

Корень уравнения

Допустим, у нас есть уравнение .

Оно обращается в верное равенство при . Это значение (число) и является корнем уравнения.

Решить уравнение – это значит найти его корень или корни (в зависимости от количества переменных), либо доказать, что их нет.

Обычно, корень пишется так: . Если корней несколько, они просто перечисляются через запятую, например: , .

Примечания:

1. Некоторые уравнения могут быть не решаемы.

Например: . Какое бы мы число не подставили вместо x , получить верное равенство не получится. В этом случае в ответе пишется: “уравнение не имеет корней”.

2. Некоторые уравнения имеют бесконечное множество корней.

Например: . В данном случае решением является любое число, т.е. , , , где N , Z и R – это натуральные, целые и действительные числа, соответственно.

Решение задач с применением модуля числа

Решение:

Следует понимать, что мы не располагаем числа — 15 ; — 1 ; в порядке возрастания. 4 ; 7, но их модули.

Для этого мы должны определить модули каждого из них:

|-15| = 15

|-1| = 1

Длина такого отрезка всегда является неотрицательной величиной.

Два шарика катятся по прямой линии. Первый шар покатился на 4 м вправо от начальной точки, второй шар покатился на 6 м влево от начальной точки.

Проведите координатную линию и отметьте на ней координаты точек остановки двух шаров.

Расположите эти числа в порядке возрастания (от наименьшего к наибольшему):

1, 4, 7, 15 .

Это дает следующую последовательность уравнений,

|-1| = 1

|4| = 4

|7| = 7

|-15| = 15

Следовательно, числа должны располагаться в порядке возрастания их модуля: -1, 4, 7, 7, -15

Ответ: — 1, 4, 4, 7, 7, — 15

|-15| = 15

На координатной прямой мы отметили две точк и-73 и 68. Какой коэффициент числа больше?

Решение:

Представьте, что на координатной прямой на определенном расстоянии от точки O (начало координат) отмечены две точки.

Слева от начала координат находится точка с координатам и-73.

Справа от начала координат находится точка с координатой 68.

Мы знаем, что модуль — это расстояние от данной точки до начала координат, выраженное в единичных отрезках.

Понятие модуля числа часто кажется студентам пугающим и непонятным. На самом деле, в этой теме по математике 6 класса нет ничего сложного. Чтобы лучше понять вопрос, давайте рассмотрим основные моменты, связанные с понятием коэффициента.

Мы начнем с понятия числовой линии и вектора. Прямая линия — это линия, на которой можно увидеть направление движения, точку 0 (начало координат) и величину единичного перехвата.

Каждое из действительных чисел может быть отмечено на числовой прямой. Независимо от подмножества, размер числа и его десятичные знаки. Прямая линия бесконечна и поэтому подходит абсолютно ко всем числам, кроме комплексных.

Числовая линия часто используется для сравнения различных типов чисел. Если отметить на линии два числа, то число справа будет больше, а число слева — меньше.

Слева от начала координат находится точка с координатам и-73.

Справа от начала координат находится точка с координатой 68.

Мы знаем, что модуль — это расстояние от данной точки до начала координат, выраженное в единичных отрезках.

Представьте, что на координатной прямой на определенном расстоянии от точки O (начало координат) отмечены две точки.

Модуль — это размер сегмента вектора. То есть, если число обозначено символом модуля, то вычитается параметр направления вектора. В геометрии это необходимо для нахождения сумм векторов и вообще для любых алгебраических операций с векторами. В этом примере невозможно указать и учесть направление, поэтому был придуман модуль.

В алгебре модуль числа означает, что при вычислениях учитывается только размер отрезка, без учета направления. На практике это означает, что

повороты модуля:

Возникает вопрос, почему отрицательное число становится положительным? Знак минус указывает только направление вектора. Символ знака минус указывает направление знака. А знак модуля отменяет параметр направления. Может ли размер сегмента быть отрицательным? Нет, конечно, нет. Таким образом, коэффициент отрицательного числа всегда является положительным числом.

|-15| = 15

В этом уроке мы более подробно рассмотрим понятие коэффициента числа.

Модуль — это расстояние между началом координат и числом на координатной прямой. Поскольку расстояние никогда не бывает отрицательным, модуль всегда неотрицателен. Поэтому модуль числа 3 равен 3, так же как модуль числ а-3 равен 3.

Предположим, что на координатной прямой расстояние между целыми числами равно одному шагу. Если теперь обозначить числ а-3 и 3, то их расстояние от начала координат равно трем шагам:

Коэффициент — это не только расстояние между началом координат и числом. Модулем также является расстояние между любыми двумя числами на координатной прямой. Это расстояние выражается как разность между этими числами с помощью символа модуло:

Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: