Чему равен радиус описанной окружности около треугольника: формула и способы расчета

4. планиметрия
                                читать 0 мин.

Правило встречается в следующих упражнениях:

7 класс

Задание 1025, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1027, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1028, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1029, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1037, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 9, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 12, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1058, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1072, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1277, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно

что и требовалось доказать.

Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.

Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).

Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .

Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Доказательство теоремы

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему.

Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Геометрическое место точек, обладающих свойством «\( \displaystyle X\)» — такое множество точек, что все они обладают свойством «\( \displaystyle X\)» и никакие другие точки этим свойством не обладают.

Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.

А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.

В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Тут множество – это серединный перпендикуляр, а свойство «\( \displaystyle X\)» — это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  • Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
  • Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему

Приступим:

Проверим 1. Пусть точка \( \displaystyle M\) лежит на серединном перпендикуляре к отрезку \( \displaystyle AB\).

Соединим \( \displaystyle M\) с \( \displaystyle A\) и с \( \displaystyle B\).Тогда линия \( \displaystyle MK\) является медианой и высотой в \( \displaystyle \Delta AMB\).

Значит, \( \displaystyle \Delta AMB\) – равнобедренный, \( \displaystyle MA=MB\) – убедились, что любая точка \( \displaystyle M\), лежащая на серединном перпендикуляре, одинаково удалена от точек \( \displaystyle A\) и \( \displaystyle B\).

Теперь 2. Почти точно так же, но в другую сторону. Пусть точка \( \displaystyle M\) равноудалена от точек \( \displaystyle A\) и \( \displaystyle B\), то есть \( \displaystyle MA=MB\).

Возьмём \( \displaystyle K\) – середину \( \displaystyle AB\) и соединим \( \displaystyle M\) и \( \displaystyle K\). Получилась медиана \( \displaystyle MK\). Но \( \displaystyle \Delta AMB\) – равнобедренный по условию \( \displaystyle (MA=MB)\Rightarrow MK\) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка \( \displaystyle M\) — точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник \( \displaystyle ABC\). Проведём два серединных перпендикуляра \( \displaystyle {{a}_{1}}\) и \( \displaystyle {{a}_{2}}\), скажем, к отрезкам \( \displaystyle AB\) и \( \displaystyle BC\). Они пересекутся в какой-то точке, которую мы назовем \( \displaystyle O\).

А теперь, внимание!

Точка \( \displaystyle O\) лежит на серединном перпендикуляре \( \displaystyle {{a}_{1}}\Rightarrow OA=OB\);точка \( \displaystyle O\) лежит на серединном перпендикуляре \( \displaystyle {{a}_{2}}\Rightarrow OB=OC\).И значит, \( \displaystyle OA=OB=OC\) и \( \displaystyle OA=OC\).

Примеры вычисления диаметра

Давайте для закрепления рассмотрим несколько примеров.

Пример 1. Диаметр по длине окружности трубы

Предположим, у вас под рукой не оказалось штангенциркуля (устройства для измерения ширины изделий).

А вам требуется рассчитать диаметр действующей трубы, конца которой не видно. Для этого с помощью рулетки или сантиметра, вы можете измерить длину окружности, просто обернув рулетку вокруг трубы. А потом эту длину нужно будет разделить на 3,14. Если длина окружности трубы оказалась 31,4 сантиметра, тогда диаметр будет равен частному этой длинны к числу Пи, то есть:

d = 31,4 / 3,14 = 10 см.

Это и есть правильный ответ – 10 сантиметров.

Пример 2. Диаметр по колеса радиусу

Тут всё гораздо проще. Предположим, что вы знаете радиус колеса велосипеда – 10 дюймов. Какой будет диаметр?

Диаметру будет равен двум радиусам, то есть 20 дюймов.

Кстати, для справки, 1 дюйм = 2,54 сантиметра. То есть 10 дюймов = 25,4 сантиметра. В итоге диаметр колеса равен: 2 × 25,4 = 50,8 см.

Вопросы и ответы

И конечно же обратите внимание на ответы на часто задаваемые вопросы относительно расчёта длины диаметра круга

Как работает ваш онлайн-калькулятор?

Просто. Вы выбираете, что известно: радиус, длина окружности или площадь круга (1), затем вписываете известное значение (2), выбираете размерность из мм, см, м, км (3) и нажимаете кнопку «рассчитать»?

Какие есть ещё калькуляторы для круга у вас на сайте?

У нас есть различные калькуляторы, в частности калькуляторы: площади круга, длины окружности и диаметра. Для последнего калькулятор находится на данной странице.

Достаточно ли у меня данных для расчёта?

Для вычисления диаметра круга нужно что-то одно: радиус, длина окружности или площадь круга. Остальное вычислит наш калькулятор по специальным формулам, которые описаны выше.

Почему Пи равняется 3,1415926…, а не является «ровным» числом?

Число Пи – это отношение длины окружности к диаметру. После его вычисления математики выяснили, что оно является иррациональным числом: то есть его значение не может быть точно выражено в виде дроби m/n, где m — целое число, а n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. На июнь 2022 года известны первые 100 триллионов знаков числа «пи» после запятой. И получается, что именно с такой точностью можно рассчитать площадь круга. Если у квадрата и треугольника площадь точная, то у круга всегда приблизительная.

Если у автомобильного колеса параметр R16, то какой у него диаметр?

16 дюймов, а радиус 8 дюймов. Как ни странно, диаметр такого колеса (точнее диска колеса) составляет 16 дюймов, то есть 40,64 см. Очень часто люди называют радиус в качестве единицы измерения: мол, радиус 16 дюймов. Но тогда представьте, для какого трактора диаметр диска будет более 80 сантиметров.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.

Понятие правильного многоугольника и описанной окружности

Существуют разные виды многоугольников, которые отличаются по следующим параметрам:

  • количество углов;
  • число сторон.

В том случае, когда все стороны и углы в многоугольнике равны, такой многоугольник является правильным. Перечисленные условия представляют собой признаки правильного многоугольника:

Перечислим важные свойства правильного многоугольника:

  1. Равенство всех сторон: .
  2. Равенство всех углов: .
  3. Совпадение центральной точки вписанной окружности O в и центральной точки описанной окружности Oо. С этими точками совпадает центр многоугольника O.
  4. Все углы n-угольника в сумме составляют: .
  5. Все внешние углы n-угольника в сумме составляют 360°: .
  6. Число диагоналей (Dn) n-угольника определяется, как ½ произведения числа вершин на число диагоналей, которые выходят из каждой вершины: .
  7. В какой-либо многоугольник допустимо вписать окружность и описать ее около него. Площадь части круга — кольца, образованного этими окружностями — определена лишь длиной стороны многоугольника: .
  8. Равенство всех биссектрис углов, расположенных между сторонами, а также пересечение ими центра правильного многоугольника O.

Известно, что около какого-либо треугольника и четырехугольника, являющихся правильными, допустимо описать окружность. Рассмотрим подобную возможность в случае правильного многоугольника.

В действительности около произвольного многоугольника, который является правильным, допустимо описать окружность. Попробуем доказать это утверждение.

Свойства описанной около треугольника окружности. Теорема синусов

Фигура Рисунок Свойство
Средне-перпендикулярный
к сторонам треугольника
Все середины перпендикуляров, проведенных к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательства
Окружность, описанная вокруг треугольника Вокруг любого треугольника можно описать окружность. Центром окружности, описанной вокруг треугольника, является точка пересечения всех серединных перпендикуляров, проведенных к сторонам треугольника.
Посмотреть доказательства
Центр окружности, описанной около остроугольного треугольника Центр окружности, описанной вокруг остроугольного треугольника, лежит внутри треугольника.
Центр окружности, описанной около прямоугольного треугольника Центр окружности, описанной около прямоугольного треугольника, является серединой гипотенузы.
Посмотреть доказательства
Центр окружности, описанной около тупоугольного треугольника Центр окружности, описанной около тупоугольного треугольника, лежит вне треугольника.
Теорема синусов Для любого треугольника справедливы равенства (теорема синусов):

,

где a, b, c — стороны треугольника, A, B, C — углы треугольника, R — радиус описанной окружности.

Посмотреть доказательства

Площадь треугольника Для любого треугольника верно равенство:

S = 2R2 sin A sin B sin C ,

где А, В, С — углы треугольника, S — площадь треугольника, R — радиус описанной окружности.

Посмотреть доказательства

Радиус описанной окружности Для любого треугольника верно равенство:

где а, b, с — стороны треугольника, S — площадь треугольника, R — радиус описанной окружности.

Посмотреть доказательства

Середина перпендикулярна сторонам треугольника

Все середины перпендикуляров, проведенных к сторонам произвольного треугольника, пересекаются в одной точке.

Посмотреть доказательства

Окружность, описанная вокруг треугольника

Вокруг любого треугольника можно описать окружность. Центром окружности, описанной вокруг треугольника, является точка пересечения всех серединных перпендикуляров, проведенных к сторонам треугольника.

Посмотреть доказательства

Центр окружности, описанной около остроугольного треугольника

Центр окружности, описанной вокруг остроугольного треугольника, лежит внутри треугольника.

Центр окружности, описанной около прямоугольного треугольника

Центр окружности, описанной около прямоугольного треугольника, является серединой гипотенузы.

Посмотреть доказательства

Центр окружности, описанной около тупоугольного треугольника

Центр окружности, описанной около тупоугольного треугольника, лежит вне треугольника.

Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где a, b, c — стороны треугольника, A, B, C — углы треугольника, R — радиус описанной окружности.

Посмотреть доказательства

Площадь треугольника

Для любого треугольника верно равенство:

S = 2R2 sin A sin B sin C ,

где А, В, С — углы треугольника, S — площадь треугольника, R — радиус описанной окружности.

Посмотреть доказательства

Радиус описанной окружности

Для любого треугольника верно равенство:

где а, b, с — стороны треугольника, S — площадь треугольника, R — радиус описанной окружности.

Посмотреть доказательства

Определение правильного треугольника

Треугольник называется правильным, если все его стороны равны: AB + AC + BC. Правильный треугольник еще называется равносторонним.

Общие сведения

Любое пространство можно описать размерностью. В трёхмерном измерении плоская геометрическая фигура, состоящая из трёх отрезков и такого же количества точек, в которых они соединяются, называется треугольником. Отрезки называют сторонами или боковыми гранями, площадь, ограниченная ими — внутренней, а точки — вершинами. Фигура имеет 3 угла и является невырожденной.

Строгого требования к обозначениям элементов многоугольника нет. Но традиционно вершины подписывают заглавными буквами латинского алфавита A, B, C, а противолежащие им стороны — аналогичными строчными знаками. В качестве обозначений для углов используют греческие символы: α, β, γ. Например, если имеется треугольник ABC, у него будут углы A, B, C и стороны a, b, c. Боковые грани могут подписываться и как отрезки, тогда в их имени учитываются ограничивающие точки. Например, AB, BC, CA.

В зависимости от соотношения размеров сторон, все треугольники разделяют на 3 вида. Они бывают:

  • Равнобедренными — многоугольники, у которых одна сторона не равна двум другим. Эта грань называется основанием. Углы при этой стороне равны.
  • Разносторонние (неправильные) — длины всех граней разные.
  • Равносторонние — треугольники, имеющие одинаковые стороны. Часто эти фигуры называют правильными. По сути, они являются частным случаем равнобедренного многоугольника.

Существуют правила, позволяющие утверждать о равенстве или подобии двух и более треугольников. Они считаются идентичными, то есть их параметры полностью совпадают, если 2 стороны и угол равны или все грани имеют одинаковую длину. А также фигуры будут одинаковыми, когда у них совпадают 2 стороны и угол, располагающийся напротив большего отрезка.

Особые линии и точки

Медиана, высота и биссектриса — 3 замечательные линии любого треугольника. Представляют они собой внутренние отрезки, построенные из углов на противоположные стороны. Линия, соединяющая вершину с серединой противоположной грани, называется медианой. Луч, разделяющий угол на 2 равные части — это биссектриса, а перпендикуляр, построенный к стороне — высота.

В любом правильном треугольнике можно начертить 3 отрезка. Если отложить медиану, а потом биссектрису и высоту, можно заметить, что эти линии совпадут. Эта особенность и есть замечательным свойством равностороннего многоугольника, то есть если в любой другой трёхугольной фигуре можно построить 12 особых линий, то в рассматриваемом только 3.

Доказать это утверждение можно следующим образом: пусть имеется треугольник АВС, в котором проведена высота ВH. Далее, рассуждения нужно построить так:

  • Отрезок BH перпендикулярен прямой AC по построению.
  • Точка H разделяет отрезок AC на AD и CD. Если это утверждение будет верным, это означает, что построенная высота BH будет медианой треугольника.
  • Отрезок BH создаёт в многоугольнике 2 угла — ∠ABH и ∠CBH. При верности этого утверждения можно утверждать, что отрезок BH является биссектрисой.

Если создать зеркальное отражение треугольнику и совместить его с оригинальным, все углы попарно совместятся. Совпадут и стороны. Так как ВH — высота, она перпендикуляр. Значит, в точке H отрезок образует прямой угол с боковой гранью AC. Отсюда следует, что образованные треугольники AHB и CBH прямоугольные.

Они являются равными по общей гипотенузе и острому углу. Это следует из того, что правильный многоугольник — частный случай равнобедренного. Так как треугольники совпадают, у них одинаковые углы ABH и CBH. Причём они смежные, поэтому BH — биссектриса. В то же время точка H делит AC на 2 равных отрезка, значит, BH — медиана.

Диметр окружности

Для того, что бы знать, как найти диаметр окружности, нужно обратиться к формулам. Основных формул, по которым можно вычислить диаметр окружности две. Первая — D = 2R. Здесь диаметр равен удвоенному радиусу, где радиус – промежуток от центра до любой из точек окружности (R). Рассмотрим пример, если в задании известен радиус и он равен 10 см, то можно легко найти диаметр. Для этого значения радиуса подставим в формулу D = 2 * 10 = 20 см

Вторая формула дает возможность найти диаметр по длине окружности и выглядит она так D = L/П, где L- величина длины окружности, а П – это число Пи, которое примерно равно 3,14. Эту формулу очень удобно применять в практике. Если вам нужно знать диаметр люка, крышки на бак, какого-то котлована, стоит, лишь замерить их длину окружности и поделить ее на 3,14. Например, длина окружности равна 600 см, отсюда D = 600/3,14 = 191,08 см.

Примеры решения задач

Теорема синусов и ее следствия активно используются для решения задач. Давайте рассмотрим несколько примеров для закрепления материала.

Пример 1. В треугольнике ABC ∠A = 45°, ∠C = 15°, BC = 4√6. Найдите переменный ток.

Как мы решаем:

  • Согласно теореме о сумме углов треугольника:

    ∠А + ∠В + ∠С = 180°

    ∠В = 180° — 45° — 15° = 120°

  • Находим сторону переменного тока по теореме синусов:

Ответ: АС = 12.

Пример 2. Гипотенуза и один из катетов прямоугольного треугольника соответственно равны 10 и 8 см. Найдите угол против данного катета.

Как мы решаем:

Возьмем за х неизвестный угол. Тогда соотношение сторон выглядит так:

Поэтому:

Фонды .

Ответ: Угол примерно равен 53,1°.

Площадь круга

Будем выводить площадь $S$ произвольного круга с помощью радиуса окружности, ограничивающей его, равного $τ$.

Впишем в такую окружность правильный $n$-угольник, площадь которого равняется $S_n$. В такой многоугольник впишем окружность, площадь которого равняется $S’_n$ (рис. 2).

Будет очевидна верность неравенства

$S >S_n >S’_n$

Используем формулу, которая связывает радиусы вписанной и описанной окружностей для правильного многоугольника:

$τ=Rcos \frac{180^0}{n}$

Если неограниченно увеличивать число сторон в таком правильном многоугольнике (то есть взять $n→∞$), то получим, что

$cos \frac{180^0}{n}→1$, $τ→R$

Тогда будет выполняться

$S→S’_n$, $S→S_n$

Также

$P_n→2πτ$

По формуле, площадь такого многоугольника равняется $S_n=\frac{1}{2} P_n τ$, следовательно

$S=S_n=\frac{1}{2}\cdot 2πτ\cdot τ=πτ^2$

То есть, для нахождения площади круга, нужно пользоваться формулой

$S=πτ^2$

Треугольники

  • Сумма углов любого треугольника равна 180° .
  • Сторона треугольника меньше суммы двух других сторон данного треугольника. (неравенство треугольника)
  • Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
  • Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. (1 признак равенства треугольников)
  • Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. (2 признак равенства треугольников)
  • Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны. (3 признак равенства треугольников)
  • Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны. (1 признак подобия треугольников)
  • Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны. (2 признак подобия треугольников)
  • Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. (3 признак подобия треугольников)
  • Напротив равных углов лежат равные стороны.
  • Если два угла треугольника равны, то равны и противолежащие им стороны.
  • Площадь треугольника равна полупроизведению стороны на высоту, проведенную к этой стороне.
  • Площадь треугольника равна полупроизведению двух сторон треугольника на синус угла между ними.
  • Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, является медианой (то есть делит основание на две равные части) и высотой (перпендикулярна основанию).
  • Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.
  • В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
  • В прямоугольном треугольнике квадрат катета равен разности квадратов гипотенузы и другого катета.
  • В прямоугольном треугольнике катет, лежащий напротив угла 30° равен половине гипотенузы.
  • В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине этой гипотенузы.
  • Площадь прямоугольного треугольника меньше произведения его катетов.
  • Площадь прямоугольного треугольника равна половине произведения его катетов.
  • Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. (теорема косинусов).
  • Треугольник ABC, у которого AB = 5, BC = 6, AC = 7, является остроугольным.
  • Стороны треугольника пропорциональны синусам противолежащих углов. (теорема синусов)
  • Если катеты прямоугольного треугольника равны 5 и 12, то его гипотенуза равна 13.
  • Один из углов треугольника всегда не превышает 60°.
  • Серединные перпендикуляры к сторонам треугольника пересекаются в центре его описанной окружности.
  • Биссектрисы треугольника пересекаются в центре его вписанной окружности.
Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: