Теорема виета, обратная формула виета и примеры с решением для чайников

Дискриминант. теорема виета

Решение с помощью формул

Рассмотрим

$αx^2+βx+γ=0$

Для начала умножим его обе части на $4α$, будем иметь

$4α^2 x^2+4αβx+4αγ=0$

Преобразуем его левую часть так, чтобы можно было использовать формулу суммы квадрата

$4α^2 x^2+4αβx+β^2-β^2+4αγ=0$

После этого будем получать

$(2αx+β)^2-β^2+4αγ=0$

$(2αx+β)^2=β^2-4αγ$

Теперь в этом полученном равносильном уравнении количество и вид корней зависит от значения его правой части. Введем следующее определение

Определение 2

Значение $β^2-4αγ$, составленное из коэффициентов уравнения (1) будем называть дискриминантом этого уравнения.

Обозначение: $D$

Теперь далее возможны три случая. Рассмотрим их по отдельности.

  1. $D >0$

    При таком случае наше уравнение будет иметь два корня. Чтобы разрешить этот случай сделаем такую замену:

    $2αx+β=y$

    Тогда

    $y^2=D$

    $y=±\sqrt{D}$

    Возвращаясь

    $2αx+β=±\sqrt{D}$

    $x=\frac{±\sqrt{D}-β}{2α}$

  2. $D=0$

    Тогда, при той же замене

    $y^2=0$

    $y=0$

    Возвращаясь

    $2αx+β=0$

    $x=\frac{-β}{2α}$

  3. $D

    В этом случае $y^2

Замечание 1

Данный способ также верен и для случаев, когда коэффициент при x или свободный коэффициент равняются нулю, то есть уравнение является неполным.

Пример 1

Решить

$2x^2+\sqrt{7} x-7=0$

Решение.

Найдем для начала для нашего уравнения значение дискриминанта.

$D=(\sqrt{7})^2-4\cdot 2\cdot (-7)=7+56=63$

Так как $63$ – положительное число, то мы приходим к первому случаю (два корня). Найдем их по выше найденным формулам.

Первый корень:

$x=\frac{\sqrt{63}-\sqrt{7}}{2\cdot 2}=\frac{2\sqrt{7}}{4}=0,5\sqrt{7}$

Второй корень:

$x=\frac{-\sqrt{63}-\sqrt{7}}{2\cdot 2}=\frac{-4\sqrt{7}}{4}=-\sqrt{7}$

Ответ: $0,5\sqrt{7} \ и \ -\sqrt{7}$.

Кубическое уравнение

Сегодня выполняем запрос пользователя Решение кубического уравнения.
Канонический вид кубического уравнения:

Решать кубическое уравнение мы будем по формуле Виета.
Формула Виета — способ решения кубического уравнения вида

Соответственно, чтобы привести к этому виду оригинальное уравнение первым шагом все введенные коэффициенты делятся на коэффициент а:

Калькулятор ниже, а описание формулы Виета — под ним

Точность вычисления

Знаков после запятой: 2

Кстати сказать, на других сайтах почему-то для решения кубических уравнений используют формулу Кардано, однако я согласен с Википедией в том, что формула Виета более удобна для практического применения. Так что почему везде формула Кардано — непонятно, разве что лень людям Гиперболические функции и Обратные гиперболические функции реализовывать. Ну мне не лень было.

Итак, формула Виета (из Википедии)
Обратите внимание, что по представлению формулы Виета а — второй коэффициент, а коэффициент перед x3 всегда считается равным 1. Калькулятор позволяет ввести а как коэффициент перед х3, но сразу же на него и делит уравнение, чтобы получить 1
Вычисляем:

  1. Если S
  2. Q > 0:
  3. (действительный корень)
  4. (пара комплексных корней)
  5. Q
  6. (действительный корень)
  7. (пара комплексных корней)
  8. Если S = 0, то уравнение вырождено и имеет меньше 3 различных решений (второй корень кратности 2):

По этим формулам калькулятор и работает. Решает вроде правильно, хотя решения с мнимой частью не проверял. Если что, пишите.

Как использовать теорему Виета

Теперь мы готовы перейти к самому методу Виета для решения квадратных уравнений.

Теорема Виета для приведённых квадратных уравнений « x 2 + px + q = 0 » гласит что справедливо следующее:

x1 + x2 = −p
x1 · x2 = q

, где « x1 » и « x2 » — корни этого уравнения.

Чтобы было проще запомнить формулу Виета, следует запомнить: «Коэффициент « p » — значит плохой, поэтому он берется со знаком минус ».

Так как в этом уравнении « a = 1 », квадратное уравнение считается приведённым, значит, можно использовать метод Виета. Выпишем коэффициенты « p » и « q ».

Запишем теорему Виета для квадратного уравнения.

x1 + x2 = − 4
x1 · x2 = −5

Методом подбора мы приходим к тому, что корни уравнения « x1 = −5 » и « x2 = 1 ». Запишем ответ.

Рассмотрим другой пример.

Старший коэффициент « a = 1 » поэтому можно применять теорему Виета.

x1 + x2 = − 1
x1 · x2 = −6

Методом подбора получим, что корни уравнения « x1 = −3 » и « x2 = 2 ». Запишем ответ.

Если у вас не получается решить уравнение с помощью теоремы Виета, не отчаивайтесь. Вы всегда можете решить любое квадратное уравнение, используя формулу для нахождения корней.

Деление уравнение на первый коэффициент

Рассмотрим уравнение, которое по заданию требуется решить, используя теорему Виета.

Сейчас в уравнении « a = 2 », поэтому перед тем, как использовать теорему Виета нужно сделать так, чтобы « a = 1 ».

Для этого достаточно разделить все уравнение на « 2 ». Таким образом, мы сделаем квадратное уравнение приведённым.

Теперь « a = 1 » и можно смело записывать формулу Виета и находить корни методом подбора.

x1 + x2 = − (−8)
x1 · x2 = −9
x1 + x2 = 8
x1 · x2 = −9

Методом подбора получим, что корни уравнения « x1 = 9 » и « x2 = −1 ». Запишем ответ.

Бывают задачи, где требуется найти не только корни уравнения, но и коэффициенты самого уравнения. Например, как в такой задаче.

Корни « x1 » и « x2 » квадратного уравнения « x 2 + px + 3 = 0 » удовлетворяют условию « x2 = 3x1 ». Найти « p », « x1 », « x2 ».

Запишем теорему Виета для этого уравнения.

x 2 + px + 3 = 0

x1 + x2 = −p
x1 · x2 = 3

По условию дано, что « x2 = 3x1 ». Подставим это выражение в систему вместо « x2».

x1 + 3x1 = −p
x1 · 3x1 = 3
4x1 = −p
3x1 2 = 3 |(:3)
4x1 + p = 0
x1 2 = 1
p = −4x1
x1 2 = 1

Решим полученное квадратное уравнение « x1 2 = 1 » методом подбора и найдем « x1 ».

Мы получили два значения « x1 ». Для каждого из полученных значений найдем « p » и запишем все полученные результаты в ответ.

Теорема Виета в общем виде

В школьном курсе математики теорему Виета используют только для приведённых уравнений, где старший коэффициент « a = 1 », но, на самом деле, теорему Виета можно применить к любому квадратному уравнению.

В общем виде теорема Виета для квадратного уравнения выглядит так:

x1 + x2 =
−p
a
x1 · x2 =
q
a

Убедимся в правильности этой теоремы на примере. Рассмотрим неприведённое квадратное уравнение.

Используем для него теорему Виета в общем виде.

x1 + x2 =
−3
3
x1 · x2 =
−18
3
x1 + x2 = −1
x1 · x2 = −6

Методом подбора получим, что корни уравнения « x1 = −3 » и « x2 = 2 ». Запишем ответ.

В заданиях школьной математики мы не рекомендуем использовать теорему Виета в общем виде.

Другими словами, реальную пользу теорема Виета приносит только для приведённых квадратных уравнений, в которых « a = 1 ». Именно в таких случаях она не усложняет жизнь, а позволят без дополнительных расчетов быстро найти корни.

Источник

Давайте попробуем разобраться, что описывает дискриминант?

В курсе алгебры изучают функции, схемы исследования функции и построения графика функций

Из всех функций важное место занимает парабола, уравнение которой можно записать в виде Так вот физический смысл квадратного уравнения — это нули параболы, то есть точки пересечения графика функции с осью абсцисс Ox Свойства парабол которые описаны ниже попрошу Вас запомнить. Придет время сдавать экзамены, тесты, или вступительные экзамены и Вы будете благодарны за справочный материал

Знак при переменной в квадрате соответствует тому, будут ли ветки параболы на графике идти вверх (a>0),

или парабола ветвями вниз (a<0).

Вершина параболы лежит посередине между корнями

История происхождения

Теорема Виета — это понятие знакомо практически каждому со школьных времен. Но действительно ли это «знакомо»? Мало кто сталкивается с ним в повседневной жизни, но не все, кто занимается математикой, иногда до конца понимают глубокий смысл и огромное значение этой теоремы

Поняв важность такого простого и эффективного математического инструмента, невольно думаешь о человеке, который его первым открыл

Известный французский ученый, начал свою карьеру юристом, но, очевидно, его призванием была математика. Находясь на королевской службе в качестве советника, он прославился тем, что смог прочитать перехваченное зашифрованное сообщение короля Испании в Нидерланды. Это дало возможность французскому королю Генриху III узнать обо всех намерениях его противников. Постепенно присоединяясь к математическим знаниям, Франсуа Виет пришел к выводу, что должна быть тесная связь между новейшими исследованиями «алгебраистов» и глубоким геометрическим наследием древних. В ходе научных исследований он разработал и сформулировал почти всю элементарную алгебру. Он был первым, кто ввел использование буквенных величин в математическом аппарате, четко обозначив понятия: число, значение и их взаимосвязь. Виет доказал, что, выполняя операции в символической форме, можно решить задачу для общего случая, практически для любых значений данных величин.

Его исследования по решению уравнений более высоких степеней, чем вторая, привели к теореме, которая теперь известна как обобщенная теорема Виета. Это имеет большое практическое значение, а его применение позволяет быстро решать уравнения более высокого порядка.

Одно из свойств этой теоремы следующее: произведение всех n-й степени равно ее свободному члену. Это свойство часто используется при решении уравнений третьей или четвертой степени, чтобы понизить порядок полинома. Если полином степени n имеет целые корни, то их легко определить простым методом выбора. И тогда, поделив многочлен на выражение (x-x1), мы получим многочлен (n-1) -й степени.

В технических науках существует огромное количество способов решения квадратных уравнений.  Со временем, многие решают уравнения, даже, устно без применения письменных принадлежностей.

Теорема Виета, является одним из таких методов решения. Она довольно проста в использовании и понятна даже на начальном уровне изучения в школах. В данном материале подробно разберем теорему Виета. Выведем формулы для ее доказательства.

При решении квадратных уравнений можно наблюдать целый ряд взаимодействий. Наиболее явным считается, взаимосвязь между корнем значения и примененным коэффициентом.

Сумма значений корня равняется x^2 + bx + c = 0 будет равна коэффициенту второй с обратным знаком.

Произведение корней равняется простому числу.

При заданном уравнении x^2 + bx + c = 0, будут справедливы два основных равенства.

x_1+x_2=-b;

x_1⋅x_2=c.

Проведя анализ обоих уравнений, приходим к выводу, что оба выражения являются правдивыми.

Рассмотрим пример решения задачи, с использованием теоремы Виета:

Запишем следующее уравнение: x^2+4x+3=0.

Используя теорему, можно записать, что сумма корней равна второму значению коэффициента, у которого противоположный знак.

Применяемый коэффициент равен четырем, следовательно, преобразуем уравнение и получим значение минус четыре.

x_1+x_2=-4;

Значение произведения корней равно простому числу. В уравнение это будет число три.  Следовательно:

x_1+x_2=-4;

x_1⋅x_2=3.

Далее проверим правдивость составленных уравнений, а именно равенство произведения 3 и суммы -4.  Для этого необходимо вычислить квадратные корни заданного уравнения.

x^2+4x+3=0

Применим для этого формулы второго четного значения коэффициента.

α=1,k=2,c=3;

D_1=-〖-k〗^2-ac=2^2-1⋅3=4-3=1;

x_1=(-k+√(D_1 ))/α=(-2+√1)/1=(-2+1)/1=(-1)/1=-1;

x_1=(-k-√(D_1 ))/α=(-2-√1)/1=(-2-1)/1=(-3)/1=-3.

По итогам проведенных вычислений мы видим, что корни уравнения равны -1 и -3. Следовательно их сумма равняется заданному коэффициенту. Отсюда следует, что уравнение решено правильно.

x_1+x_2=-4.

-1+(-3)=-4.

Выполняется условие, на основание которого произведение данных корней равняется свободному числу.

x_1⋅x_2=3.

-1⋅(-3)=3.

Результат правильного вычисления:

x_1+x_2=-4.

x_1⋅x_2=3.

Решение квадратных уравнений через дискриминант

Квадратные уравнения \(ax^2+bx+c=0\), у которых все коэффициенты \( a, \; b,\; с\) не равны 0, называются полными квадратными уравнениями.

Чтобы их решать, нужно уметь находить дискриминант квадратного уравнения. Ничего страшного в этом нет, несмотря на странное называние. Дискриминантом уравнения \(ax^2+bx+c=0\) называют выражение:
$$D=b^2-4ac;$$

  1. Если дискриминант получился больше нуля \((D \ge 0)\), то квадратное уравнение имеет два корня, которые можно найти по формулам:
    $$x_1=\frac{-b+\sqrt{D}}{2a};$$
    $$x_2=\frac{-b-\sqrt{D}}{2a};$$
  2. Если дискриминант равен нулю \((D=0)\), то квадратное уравнение имеет один корень:
    $$x=\frac{-b}{2a};$$
  3. Если дискриминант меньше нуля \((D

Примеры квадратных уравнений

Пример 11
$$2x^2-9x+4=0;$$
Прежде чем решать уравнение, я рекомендую выписать все коэффициенты:
$$a=2 \quad b=-9 \quad c=4.$$
Используя значения коэффициентов, можем посчитать дискриминант:
$$D=b^2-4ac=(-9)^2-4*2*4=81-32=49;$$
Ура, дискриминант посчитан и он больше нуля! Значит корней будет два, найдем их по формулам:
$$x_1=\frac{-b+\sqrt{D}}{2a}=\frac{-(-9)+\sqrt{49}}{2*2}=\frac{9+7}{4}=\frac{16}{4}=4;$$
$$x_2=\frac{-b-\sqrt{D}}{2a}=\frac{-(-9)—\sqrt{49}}{2*2}=\frac{9-7}{4}=\frac{2}{4}=\frac{1}{2};$$
Ответ: \(x_1=4 \quad и \quad x_2=\frac{1}{2}.\)

Пример 12
$$10x^2+x-21=0;$$
$$a=10 \quad b=1 \quad c=-21.$$
$$D=b^2-4ac=1^2-4*10*(-21)=1+840=841;$$
$$x_1=\frac{-b+\sqrt{D}}{2a}=\frac{-1+\sqrt{841}}{2*10}=\frac{-1+29}{20}=\frac{28}{20}=\frac{7}{5};$$
$$x_2=\frac{-b-\sqrt{D}}{2a}=\frac{-1-\sqrt{841}}{2*10}=\frac{-1-29}{20}=\frac{-30}{20}=\frac{-3}{2};$$
Ответ: \(x_1=\frac{7}{5} \quad и \quad x_2=-\frac{3}{2}.\)

Пример 13
$$(x-7)^2=2x^2+11x+23;$$
Это уравнение еще нужно привести к стандартному виду, для этого раскроем скобки по формуле «квадрат разности» \((a-b)^2=a^2-2ab+b^2\):
$$x^2-14x+49=2x^2+11x+23;$$
Перекинем все слагаемые в левую часть, не забывая при этом менять знак на противоположный:
$$x^2-14x+49-2x^2-11x-23=0;$$
Приводим подобные слагаемые:
$$-x^2-25x+26=0;$$
$$a=-1 \quad b=-25 \quad c=26.$$
$$D=b^2-4ac=(-25)^2-4*(-1)*26=625+104=729;$$
$$x_1=\frac{-b+\sqrt{D}}{2a}=\frac{-(-25)+\sqrt{729}}{2*(-1)}=\frac{25+27}{-2}=\frac{52}{-2}=-26;$$
$$x_2=\frac{-b-\sqrt{D}}{2a}=\frac{-(-25)-\sqrt{729}}{2*(-1)}=\frac{25-27}{-2}=\frac{-2}{-2}=1;$$
Ответ: \(x_1=-26 \quad и \quad x_2=1.\)

Пример 14
$$3x^2+7x+6=0;$$
$$a=3 \quad b=7 \quad c=6.$$
$$D=b^2-4ac=7^2-4*3*6=49-72=-23;$$
Стоп! Дискриминант получился отрицательный, это означает, что у этого квадратного уравнения не будет корней.Ответ: Нет корней.

Пример 15
$$4x^2-4x+1=0;$$
$$a=4 \quad b=-4 \quad c=1.$$
$$D=b^2-4ac=(-4)^2-4*4*1=16-16=0;$$
Дискриминат получился равен нулю. В этом случае у квадратного уравнения будет всего один корень, который можно найти по формуле:
$$x=\frac{-b}{2a}=\frac{-(-4)}{2*4}=\frac{4}{8}=\frac{1}{2};$$
Ответ: \(x=\frac{1}{2}.\)

Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения

Кубическим уравнением называется уравнение вида

  • ax3 + bx2 + cx +d = 0 , (1)
  • где a, b,c ,d — постоянные коэффициенты, а х — переменная.

Мы рассмотрим случай, когда коэффициенты являются веществеными числами.

Корни кубического уравнения. Нахождение корней (решение) кубического уравнения.

Число х называется корнем кубического уравнения (1), если при его подстановке уравнение (1) обращается в верное равенство.

Кубическое уравнение имеет не более трех корней (над комплексным полем всегда три корня, с учетом кратности) . И всегда имеет хотя бы 1 (вещественный) корень. Все возможные случаи состава корней легко определить с помощью знака дискриминанта кубического уравнения, т.е.:

Δ= -4b3d + b2c2 — 4ac3 + 18abcd — 27a2d2  (Да, это дискриминант кубического уравнения)

Итак, возможны только 3 следующих случая:

  • Δ > 0 — тогда уравнение имеет 3 различных корня. (Для продвинутых — три различных вещественных корня)
  • Δ
  • Δ = 0 — хотя бы 2 корня уравнения совпадают. Т.е. мы имеем дело либо с уравнением с 2умя совпадающими корнями, и еще 1ним отличным от них, либо с уравнением с 3емя совпадающими корнями. (В любом случае все корни вещественные. И уравнение имеет 3 совпадающих корня, тогда и только тогда, когда результант его и его второй производной равен нулю)

На практике часто , решение кубических уравнений упирается в разложении их на множители. Т.е. алгоритм приблизительно следующий: угадываем один корень, пусть это будет корень α. Затем делим многочлен на (х- α), (если α корень, то он должен поделиться без остатка).

Ну а дальше мы имеем дело с обычным квадратным уравнением. Но угадать можно только рациональный корень, и то, если коэффициенты подобраны удачным образом, так что этот корень просто угадывается. Мы же рассмотрим универсальные методы решения кубичесих уравнений.

Формула Кардано решения кубических уравнений (нахождения корней)

Это формула для нахождения корней канонической формы кубического уравнения. (Над полем комлексных чисел).

Канонической формой кубического уравнения называется уравнение вида

y3 + py + q = 0 (2)

К такому виду можно привести любое кубическое уравнение вида (1) с помощью следующей замены:

  • x= y — b/3a (3)
  • p= — b2/3a2 + c/a
  • q= 2b3/27a3 — bc/3a2 + d/a

Итак, приступим к вычислению корней. Найдем следующие величины:

  • Q=(p/3)3 + (q/2)2
  • α = (-q/2 + Q1/2)1/3
  • β = (-q/2 — Q1/2)1/3

Дискриминант уравнения (2) в этом случае равен

Δ = — 108Q

Дискриминант исходного уравнения (1) будет иметь тот же знак , что и вышеуказанный дискриминант. Корни уравнения (2) выражаются следующим образом:

  • y1= α + β
  • y2= — (α + β)/2 + (31/2(α — β)/2)i
  • y3 =- (α + β)/2 — (31/2(α — β)/2)i

Соответственно, если Q>0, то уравнения (2) и (1) будут иметь лишь 1 (вещественный) корень, y1. Подставим его в (3) и найдем х для уравнения (1). (если вас интересуют также мнимые корни, то просто вычислите еще и y2, y3 и подставьте их в (3).

Если Q0, то вычисляем

φ=(arccos(R/Q3/2))/3

И наше уравнение имеет 3 корня (вещественных):

  • x1= — 2(Q)1/2cos(φ) — a/3
  • x2= — 2(Q)1/2cos(φ+2π/3) — a/3
  • x3= — 2(Q)1/2cos(φ-2π/3) — a/3

б) Если S

Основные формулы теоремы Виета

В этом пункте мы расширяем знания до класса задач, которые вращаются вокруг формул Виета, которые на самом деле не являются формулами в определенном смысле, а скорее очень полезными инструментами для извлечения информации о корнях многочлена, фактически не зная числового значения самих корней.

Для решения задач и уравнений как квадратных, так и кубических, применяются соответствующие формулы. в математике они получили название теоремы Виета.

Разберем подробно каждое уравнение:

Формула

Алгебраическая сумма числовых значений:

где: n- действительные значения корней;

Рассмотрим еще несколько формул:

x_1+x_2+x_3+x_4+………+x_n=-a_1/a_0;

x_1⋅x_2+x_3⋅x_4+………+x_(n-1)⋅x_n=a_2/a_0;

x_1⋅x_2⋅x_3+x_1⋅x_2⋅x_4+………+x_(n-2)⋅x_(n-1)=-a_3/a_0;

x_1⋅x_2⋅x_3……..x_n=(-1_ )〖^n〗⋅a_n/a_0.

Для определения основных формул теоремы Виета мы используем следующие компоненты:

  • алгебраическая теорема разложения значений многочлена простые линейные множители значений;
  • вычисление равных между собой многочленов, при помощи равенства их коэффициентов.

Формула

Формула для кубического уравнения:

С левой части уравнения данные будут именоваться, как симметрические многочлены.

Что такое квадратные уравнения?

А теперь подробно с примерами обсудим квадратные уравнения.

Любые уравнения, сводящиеся к виду \(ax^2+bx+c=0\), называются квадратными. Где буквы \( b,\; с\) — любые числа, \(a\neq0\). Почему \(a\neq0\) мы обсудим ниже.

Обратите внимание на порядок слагаемых в квадратном уравнении: \(a\) — всегда стоит первая и обязательно умножается на \(x^2\), она называется старшим коэффициентом (или первым); \(b\) — принадлежит второму слагаемому и всегда умножается просто на переменную \(x\), это у нас второй коэффициент; \(c\) — называют свободным членом, она не умножается ни на какую переменную. В дальнейшем старайтесь приводить квадратное уравнение к виду \(ax^2+bx+c=0\), чтобы слагаемые стояли именно в таком порядке

Это очень важно при решении уравнений, и поможет избежать множества ошибок

В дальнейшем старайтесь приводить квадратное уравнение к виду \(ax^2+bx+c=0\), чтобы слагаемые стояли именно в таком порядке

Это очень важно при решении уравнений, и поможет избежать множества ошибок

Потренируемся определять значения коэффициентов \( a, \; b,\; с\), чтобы запомнить порядок:

Пример 1
$$2x^2+3x+4=0;$$
$$a=2 \quad b=3 \quad c=4.$$

Пример 2
$$5x^2-3x-0,7=0;$$
$$a=5 \quad b=-3 \quad c=-0,7.$$

Пример 3
$$-x^2+2x+10=0;$$
Минус перед \(x^2\) можно представить в виде \(-x^2=-1*x^2\). Единицу обычно не пишут, поэтому минус перед первым слагаемым означает, что \(a=-1\):
$$a=-1 \quad b=2 \quad c=10.$$

Пример 4
$$3+x^2-5x=0;$$
Слагаемые стоят в неправильном порядке. Так коэффициенты находить неудобно, поэтому переставим все слагаемые в нужном порядке. От перемены мест слагаемых сумма не меняется:
$$x^2-5x+3=0;$$
$$a=1 \quad b=-5 \quad c=3.$$

Пример 5
$$2x^2-3x=0;$$
В уравнении нет свободного члена \(c\), поэтому он будет равен \(0\):
$$a=2 \quad b=-3 \quad c=0.$$

Пример 6
$$-4x^2+1=0;$$
А здесь уже нет второго коэффициента \(b\):
$$a=-4 \quad b=0 \quad c=1.$$

Уравнения, приведенные в примерах №5 и 6, называются неполными квадратными уравнениями, так как в них коэффициенты \(b\) или \(c\) равны нулю.

А вот если в уравнении коэффициенты \( a, \; b,\; с\) не равны 0, то такое уравнение называется полным.

Разложение квадратного трёхчлена на множители

      Утверждение. В случае, когда , квадратный трёхчлен (1) разлагается на линейные множители. В случае, когда   D < 0, квадратный трехчлен нельзя разложить на линейные множители.

      Доказательство. В случае, когда   D = 0, формула (8) и является разложением квадратного трехчлена на линейные множители:

(9)

      В случае, когда   D > 0, выражение, стоящее в квадратных скобках в формуле (8), можно разложить на множители, воспользовавшись :

      Таким образом, в случае, когда   D > 0, разложение квадратного трехчлена (1) на линейные множители имеет вид

(10)

      В случае, когда  D < 0, выражение, стоящее в квадратных скобках в формуле (8), является суммой квадратов и квадратный трёхчлен на множители не раскладывается.

      Замечание. В случае, когда  D < 0, квадратный трехчлен всё-таки , однако этот материал выходит за рамки школьного курса.

Доказательство основной теоремы Виета

Приведем основную формулу рассматриваемой теоремы: α⋅x^2+b⋅x+c=0

Составим уравнение для значения x: x_1=(-b+√D)/(2⋅a)  и x_2=(-b-√D)/(2⋅a)Из формулы  выводим и определим значение D.

D=〖b^2-4⋅a⋅c,〗^  далее составим равенство известных нам выражений: x_1+x_2=-b/a   x_1⋅x_2=c/a.

Доказательство вышесказанного равенства гласит о правильности теоремы Виета.

Запишем как правильно звучит теорема №1

Теорема 1

Квадратное уравнение вида: \

В котором значения x — это корень уравнения, а данные b и с -коэффициенты. которые имеют противоположный знак. Значения суммы корней должна равняться отношению коэффициентов.

\[x_{-} 1+x_{-} 2=-b / a \quad x_{-} 1 \cdot x_{-} 2=c / a\]

Основные доказательства правдивости данной теоремы

Для начала составим и вычислим сумма из корней, а также определим произведение этих же данных. Затем преобразуем значения, полученные в ходе вычислений. Это необходимо для того, чтобы убедиться, что они равны между собой.

-b/a и c/a.

Составляем уравнение из суммы квадратного корня значения:

x_1=(-b+√D)/(2⋅a)+(-b-√D)/(2⋅a)

Далее по правилам алгебры упрощаем уравнение. Дробные значения приводим к общему знаменателю числа.

(-b+√D)/(2⋅a)+(-b-√D)/(2⋅a)=(-b+√D+(-b-√D))/2a.

Затем упростим числитель дроби. Раскроем скобки и проведем преобразование дробного выражения.

x_1=(-b+√D)/(2⋅a)+(-b-√D)/(2⋅a)=(-b+√D+(-b-√D))/2a=(-b+√D-b-√D)/2a=(-2⋅b)/(2⋅a).

Полученное значение можно сократить и получить упрощенный вид.

x_1=(-b+√D)/(2⋅a)+(-b-√D)/(2⋅a)=(-b+√D+(-b-√D))/2a=(-b+√D-b-√D)/2a=(-2⋅b)/(2⋅a)=2 (-b)/a=-b/a.

Первое доказательство, связанное с сумой корней доказано.

Далее докажем второе соотношение из произведения корней.

Запишем и разберем уравнение произведения квадратных корней.

x_1⋅x_2=(-b+√D)/(2⋅a)⋅(-b-√D)/(2⋅a)

Применим правило перемножения дробных значений. Сделаем расчет и последнее значение запишем как:

((-b+√(D)))/(2⋅a)⋅((-b-√(D)))/(2⋅a) =((-b+√(D))⋅(-b-√(D)))/(4⋅a^2 ).

Преобразуем любым известным нам способом уравнение. Для этого подойдет способ разности значений квадратных чисел или перемножение скобок.

((-b+√(D)))/(2⋅a)⋅((-b-√(D)))/(2⋅a) =((-b+√(D))⋅(-b-√(D)))/(4⋅a^2 )=(〖(-b)〗^2-〖(√D)〗^2)/(4⋅a^2 ).

Вспомним определение корня квадрата и составим следующее уравнение:

((-b+√(D)))/(2⋅a)⋅((-b-√(D)))/(2⋅a) =((-b+√(D))⋅(-b-√(D)))/(4⋅a^2 )=(〖(-b)〗^2-〖(√D)〗^2)/(4⋅a^2 )=(b^2-D)/(4⋅a^2 ).

D=b^2-4⋅a⋅c соответствует дискриминанту квадратного уравнения.

Следовательно, значение D можно заменить следующим выражением: b^2-4⋅a⋅c

((-b+√(D)))/(2⋅a)⋅((-b-√(D)))/(2⋅a) =((-b+√(D))⋅(-b-√(D)))/(4⋅a^2 )=(〖(-b)〗^2-〖(√D)〗^2)/(4⋅a^2 )=(b^2-D)/(4⋅a^2 )=(b^2-(b^2-4⋅a⋅c))/(4⋅a^2 ).

Затем раскроем скобки уравнения и преобразуем подобные слагаемые:

(4⋅a⋅c)/(4⋅a^2 ).

Если произвести сокращение на число 4 , тогда остается только c/a.

Доказано второе соотношение корней уравнения теоремы Виета.

Запишем формулу доказательства без пояснения и постараемся ее запомнить.

x_1+x_2=(-b+√D)/(2⋅a)+(-b-√D)/(2⋅a)=(-b+√D+(-b-√D))/2a=(-2⋅b)/(2⋅a)=-b/a

x_1⋅x_2=((-b+√(D)))/(2⋅a)⋅((-b-√(D)))/(2⋅a) =((-b+√(D))⋅(-b-√(D)))/(4⋅a^2 )=(〖(-b)〗^2-〖(√D)〗^2)/(4⋅a^2 )=(b^2-D)/(4⋅a^2 )=(b^2-(b^2-4⋅a⋅c))/(4⋅a^2 )=(4⋅a⋅c)/(4⋅a^2 )=c/a.

В случае когда дискриминант квадратного уравнения равняется нулю, будет только один корень значения.

Чтобы применить теорему виета к такому уравнению, можно предположить, что оно имеет два одинаковых корня значения.

Если D=0, корень уравнения имеет значение равное (-b)/(2⋅a) .

x_1+x_2=(-b)/(2⋅a)+(-b)/(2⋅a)=((-b)+(-b))/2a=(-2b)/2a=-b/a;

x_1⋅x_2=(-b)/(2⋅a)⋅(-b)/(2⋅a)=((-b)⋅(-b))/(4a〖^2〗)==a^2/(4a〖^2〗);

Следовательно значение D равняется нулю, тогда b^2-4⋅a⋅c=0

⇒b^2=4⋅a⋅c.

b^2/(4a〖^2〗)=(4⋅a⋅c)/(4a〖^2〗)=c/a.

На практике данная теорема чаще всего применяется в виде уравнения x^2+р⋅х+q=0, где коэффициент равен единице.

Теорема 2

Запишем выражение: \

Значение \ коэффициент значений.

Произведение будет равняться любому свободному числовому значению.

Сумма будет равна значению коэффициента \.

\[x_{-} 1+x_{-} 2=(-b) /(2 \cdot a)+(-b) /(2 \cdot a)=-p\];

\.

Дискриминант деленный на 4

Квадратные уравнения иногда удобно решать по упрощенной формуле дискриминанта. Но применять ее можно не во всех случаях, а только, если коэффициент \(b\) в уравнении \(ax^2+bx+c=0\) четный (делится на 2).

Итак, представим, что коэффициент \(b\) четный, тогда дискриминант можно посчитать по формуле:
$$D_4=\left(\frac{b}{2}\right)^2-ac;$$
А корни уравнения находятся по формулам:
$$x_1=\frac{-\frac{b}{2}+\sqrt{D_4}}{a};$$
$$x_2=\frac{-\frac{b}{2}-\sqrt{D_4}}{a};$$
Кстати, обычный дискриминант \(D\) отличается от \(D_4\) в 4 раза:
$$D_4=\frac{D}{4}=\frac{b^2-4ac}{4}=\frac{b^2}{4}-\frac{4ac}{4}=\left(\frac{b}{2}\right)^2-ac;$$
Поэтому \(D_4\) называют «дискриминантом деленным на 4».

Эти формулы нужны, чтобы, когда это возможно, сократить вычисления. Разберем на примере:

Пример 16
$$7x^2-20x-1067=0;$$
$$a=7 \quad b=-20 \quad c=-1067.$$
\(b=-20\) — четный, поэтому воспользуемся дискриминантом деленным на 4:
$$D_4=\left(\frac{b}{2}\right)^2-ac=\left(\frac{-20}{2}\right)^2-7*(-1067)=(-10)^2+7469=100+7469=7569;$$
$$x_1=\frac{-\frac{b}{2}+\sqrt{D_4}}{a}=\frac{-\frac{-20}{2}+\sqrt{7569}}{7}=\frac{10+87}{7}=\frac{97}{7};$$
$$x_2=\frac{-\frac{b}{2}-\sqrt{D_4}}{a}=\frac{-\frac{-20}{2}-\sqrt{7569}}{7}=\frac{10-87}{7}=\frac{-77}{7}=-11;$$
Ответ: \(x_1=\frac{97}{7} \quad и \quad x_2=-11.\)

Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: