Уравнение сферы в трехмерном пространстве

Площадь поверхности шарового сектора, формула

Площадь плоской фигуры

Рассмотрим некую плоскую фигуру, которая задана в ПДСК. Фигура имеет ограничение кривой \(\
y=y_{1}(x)
\)сверху, а снизу \(\
-y=y_{2}(x)
\). Левая и правая её части ограничены прямыми, которые направлены вертикально и описываются уравнениями x=a и x=b. Площадь такой фигуры, которая задана описанным выше способом, может быть вычислена с использованием определенного интеграла по формуле \(\
S=\int_{a}^{b}\left(y_{1}(x)-y_{2}(x)\right) \cdot d x
\). В случае же ограничения плоской фигуры справа и слева некими кривыми, которые можно описать уравнениями \(\
x=x_{1}(y)_\quad{и}\quad x=x_{2}(y)
\)прямыми, проходящими горизонтально сверху и снизу y=c и y=d, её площадь также может быть вычислена при помощи двойного интеграла, но уже с использованием формулы \(\
S=\int_{c}^{d}\left(x_{1}(y)-x_{2}(y)\right) \cdot d y
\)

Если для представления плоской фигуры используется криволинейный сектор и она рассмотрена в полярной системе координат, задать её пределы можно уравнением ρ=ρ(ϕ) и двумя ограничивающими лучами, которые будут проходить по следующим углам ϕ=α и ϕ=β. Тогда площадь описанного криволинейного сектора может быть вычислена с помощью нахождения определенного интеграла и использования формулы \(\
S=\frac{1}{2} \cdot \int_{\alpha}^{\beta} \rho^{2}(\phi) \cdot d \phi
\)

Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы — это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) — это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость — это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость — это секущая плоскость, проходящая через центр сферы или шара, сечение образует соответственно большую окружность и большой круг. Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Занимательные факты

Это интересно:

  1. У числа «пи» есть собственные фан-клубы по всему миру. Члены общества пытаются запомнить как можно больше знаков из этого числа, а также пытаются разгадать вселенские тайны, сокрытые в числе.
  2. Площадь суши Земли составляет всего 29,2 % от её общей поверхности. Точное число площади сложно назвать из-за неравномерного рельефа Земли, такие как впадины и горы.
  3. Знания о формуле площади шара можно применять и в быту. Также этими знаниями можно подавлять соперника в споре.

Продемонстрировав объём своих знаний в области геометрии, можно изначально заставить вас уважать, а ремонтникам и продавцам можно дать понять, что вас просто так не обмануть.

Площади сферы и ее частей. Объемы шара и его частей

В следующей таблице приведены формулы для расчета объема сферы и объемов ее частей, а также площади сферы и площадей ее частей.

Фигура Рисунок Формула Описание
Прохладный S = 4πr2,

где
r — радиус сферы.

Диапазон пуль
Мяч где
r — радиус шара.
Объем мяча
Сферический ремень S = 2пр,

где
r — радиус сферы,
h – высота сферического пояса.

Площадь сферического пояса не зависит от радиусов r1 и r2 !

Площадь сферического пояса
Мяч команда где
r1, r2 — радиусы оснований сферического слоя,
h – высота сферического слоя.
Объем сферического слоя
Сферический сегмент S = 2пр,

где
r — радиус сферы,
h – высота сферического сегмента.

Площадь сферического сегмента
Шаровой сегмент где
r — радиус шара,
h – высота сферического сегмента.
Объем сферического сегмента
Сектор мяча где
r — радиус шара,
h — высота сферического сектора.
Объем сферического сектора
Прохладный

Диапазон мяча:

S = 4πr2,

где
r — радиус сферы.

Мяч

Объем мяча:

где
r — радиус шара.

Сферический ремень

Площадь сферического пояса:

S = 2пр,

где
r — радиус сферы,
h – высота сферического пояса.

Площадь сферического пояса не зависит от радиусов r1 и r2 !

Мяч команда

Объем шаровой кровати:

где
r1, r2 — радиусы оснований сферического слоя,
h – высота сферического слоя.

Сферический сегмент

Площадь сферического сегмента:

S = 2пр,

где
r — радиус сферы,
h – высота сферического сегмента.

Шаровой сегмент

Объем шарового сегмента:

где
r — радиус шара,
h – высота сферического сегмента.

Сектор мяча

Объем сектора сферы:

где
r — радиус шара,
h — высота сферического сектора.

Трактовка значений

Это следует знать:

  • Шар
    – геометрический объект, получившийся в результате вращательных полукруговых движений вокруг центра. Любая точка поверхности шара находится на одинаковом расстоянии от центра.
  • Сфера
    – не то же самое, что шар. Если тот является объёмным объектом и включает в себя внутреннее пространство, то сфера – это лишь поверхность данного объекта и имеет только свою площадь. Иными словами – нельзя сказать, что сфера имеет такой-то объём, в отличие от шара.
  • Число «пи»
    — это постоянное число, равное отношению длины окружности к её диаметру. В сокращённом виде его принято обозначать числом, равным 3,14. Но на самом деле, после тройки идёт больше тысячи цифр!
  • Радиус шара равен ½ его диаметру
    . Точный диаметр можно вычислить с использованием нескольких плоских и ровных предметов. Нужно лишь зажать шар между этими предметами, которые зажимают шар и расположены перпендикулярно друг к другу, а затем измерить получившийся диаметр.
  • Квадратная степень
    обозначается в виде двойки и означает то, что это число надо умножить на само себя один раз. Если бы степень числа была в виде тройки, то умножать на само себя нужно было бы два раза. Записав выражение на бумаге, можно понять, почему используются именно двойка и тройка, а не единица и двойка.
  • Объём
    – величина, обозначающая размер в пространстве, занимающее объектом. От диаметра зависит объём шара. Формула будет равна четырём трети, умноженным на число «пи» и вновь умноженным на его радиус в кубе.
  • Площадь
    – величина, обозначающая размер поверхности объекта, но не внутреннего пространства.

Занимательные факты

Это интересно:

  1. У числа «пи» есть собственные фан-клубы по всему миру. Члены общества пытаются запомнить как можно больше знаков из этого числа, а также пытаются разгадать вселенские тайны, сокрытые в числе.
  2. Площадь суши Земли составляет всего 29,2 % от её общей поверхности. Точное число площади сложно назвать из-за неравномерного рельефа Земли, такие как впадины и горы.
  3. Знания о формуле площади шара можно применять и в быту. Также этими знаниями можно подавлять соперника в споре.

Продемонстрировав объём своих знаний в области геометрии, можно изначально заставить вас уважать, а ремонтникам и продавцам можно дать понять, что вас просто так не обмануть.

Длина дуги кривой

При помощи определенного интеграла возможно посчитать значение длины дуги кривой, которая в полярной системе координат на отрезке задается уравнением ρ=ρ(ϕ). Эта величина вычисляется по формуле \(\
L=\int_{\alpha}^{\beta} \sqrt{\rho^{2}(\phi)+\rho^{2}(\phi)} \cdot d \phi
\)

При помощи определенного интеграла возможно посчитать значение длины дуги кривой, которая в ПДСК на отрезке \(\

\)задается уравнением \(\
\mathrm{y}=\mathrm{y}(\mathrm{x})
\). Эта величина вычисляется по формуле \(\
L=\int_{a}^{b} \sqrt{1+y^{2}(x)} \cdot d x
\)

При помощи определенного интеграла возможно посчитать значение длины дуги кривой, которая в ПДСК на отрезке \(\

\) задается уравнениями \(\
x=x(t), y=y(t)
\)параметрически. Эта величина вычисляется по формуле \(\
L=\int_{\alpha}^{\beta} \sqrt{x^{2}(t)+y^{\prime 2}(t)} \cdot d t
\)

Основные свойства сферы и шара

1. Все точки на сфере одинаково удалены от центра.2. Любая часть сферы плоскостью является окружностью.3. Любая часть сферы плоскостью является кругом.4. Сфера имеет наибольший объем среди всех пространственных фигур с одинаковой площадью поверхности. Через две диаметрально противоположные точки можно провести много красивых кругов для сферы или кругов для шара.6. Через две точки, кроме диаметрально противоположных, можно провести только одну большую окружность для сферы или одну большую окружность для шара.

7. Любые две большие окружности шара пересекаются по прямой, проходящей через центр шара, причем окружности пересекаются в двух диаметрально противоположных точках.8. Если расстояние между центрами любых двух сфер меньше суммы их радиусов и больше модуля разности их радиусов, то такие сферы пересекаются, и в плоскости пересечения образуется окружность.

О шаре и цилиндре

Так называлась работа, опубликованная античным математиком Архимедом. Она вышла в двух томах в 225 году до н. э. Он был первым, кто сделал полный и подробный трактат по основам вычисления площади поверхности сферы, объёма шара и аналогичных значений для таких элементов, как цилиндр. Результатами его деятельности пользуются до сих пор.

Архимед особенно гордился формулой объёма шара, где он доказал, что эта величина составляет две трети объёма описанного цилиндра. Он даже попросил сделать чертёж этих предметов на своей надгробной плите. Позже римский философ Цицерон обнаружил такую гробницу, к сожалению, сильно заросшую окружающей растительностью.

Аргумент, который Архимед использовал для доказательства формулы V шара, был довольно сложным и сильно вовлечён в его геометрию. Поэтому во многих современных учебниках используется упрощённая версия, основанная на концепции предела, которого, конечно, не было в античные времена. Великий математик создавал в сфере усечённый конус путём построения и вращения геометрических фигур, и только после этого он определил объём.

Сейчас кажется, что он специально выбирал такие оригинальные методы. Однако это был всего лишь лучший из тех, которые были ему доступны в греческой математике. Его основные работы были вновь открыты в XX веке. Например, Метод механических теорем, как он назывался в трактате автора.

Пример

Расчет площади поверхности Земли может быть интересным примером для применения калькулятора расчета площади шара. Земля приближенно является геоидом, то есть ее форма приближенно сферическая с некоторыми нерегулярностями.

Для расчета площади поверхности Земли можно использовать радиус, который обычно указывают в километрах. Приближенное значение радиуса Земли составляет около 6 371 километр.

Применяя формулу для расчета площади поверхности шара, получим:

  • S = 4πr2
  • S = 4 * 3.14159 * (6,371)2
  • S ≈ 4 * 3.14159 * 40,518,241
  • S ≈ 509,904,080 квадратных километров

Таким образом, приближенная площадь поверхности Земли составляет около 509,904,080 квадратных километров.

Отметим, что это приближенное значение, так как форма Земли не является точной сферой. В реальности форма Земли более сложная и неоднородная, и точное измерение ее поверхности требует более сложных геодезических методов.

Вопросы и ответы

Вот некоторые вопросы, которые могут возникнуть при использовании калькулятора площади шара (сферы) и ответы на них.

Какова формула для расчета площади поверхности шара?

Формула для расчета площади поверхности шара выглядит так: S = 4πr^2, где S — площадь поверхности, π — математическая константа (приблизительное значение 3.14159), r — радиус шара.

Как использовать калькулятор площади шара?

Введите значение радиуса шара в соответствующее поле на калькуляторе и нажмите кнопку «Рассчитать». Калькулятор автоматически применит формулу и выдаст результат — площадь поверхности шара.

Могу ли я использовать дробные значения радиуса?

Да, вы можете использовать дробные значения радиуса при расчете площади поверхности шара. Просто введите соответствующее десятичное число в поле радиуса.

В каких единицах измерения будет выведен результат площади?

Результат площади будет выведен в квадратных единицах измерения, соответствующих используемой системе измерения радиуса (например, квадратных метрах, квадратных сантиметрах и т.д.).

Можно ли использовать калькулятор для других форм, а не только для шара?

Нет, калькулятор расчета площади шара предназначен исключительно для расчета площади поверхности шара. Для расчета площади других форм (например, цилиндра, конуса и т.д.) вы можете использовать другие наши калькуляторы.

Можно ли использовать калькулятор для расчета объема шара?

Нет, калькулятор площади шара предназначен только для расчета площади его поверхности. Для расчета объема шара используется другая формула: V = (4/3)πr^3.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Площадь правильного шестиугольника: калькулятор. Рассчитайте площадь правильного (равностороннего) шестиугольника с помощью онлайн-калькулятора.
  • Калькулятор числа «e». Посмотрите онлайн нужное число знаков после запятой в числе «e» (Эйлера или Непера).
  • Площадь поверхности куба: калькулятор. Рассчитайте онлайн площадь поверхности куба по длине ребер, диагонали куба или диагоналям его сторон.
  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.

Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы — это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) — это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость — это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость — это секущая плоскость, проходящая через центр сферы или шара, сечение образует соответственно большую окружность и большой круг. Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Касательная, касательная плоскость к сфере и их свойства

Определение.Касательная к сфере — это прямая, которая касается сферы только в одной точке.

Определение.Касательная плоскость к сфере — это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение.Сегмент шара — это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h
называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула.Площадь внешней поверхности сегмента сферы с высотой h
через радиус сферы R:

S = 2π
Rh

Мы даем здесь очень простой, хотя и не совсем строгий вывод формулы для площади сферической поверхности; по своей идее он очень близок к методам интегрального исчисления. Итак, пусть дан некоторый шар радиуса R. Выделим на его поверхности какую-либо малую область (рис. 412) и рассмотрим пирамиду или конус с вершиной в центре шара О, имеющие эту область своим основанием; строго говоря, мы лишь условно говорим о конусе или пирамиде, так как основание не плоское, а сферическое. Но при малых размерах основания по сравнению с радиусом шара оно будет весьма мало отличаться от плоского (так, например, при измерении не очень большого земельного участка пренебрегают тем, что он лежит не на плоскости, а на сфере).

Тогда, обозначая через площадь этого участка — основание «пирамиды», найдем ее объем как произведение одной трети высоты на площадь основания (высотой служит радиус шара):

Если теперь всю поверхность шара разложить на очень большое число N таких малых областей , тем самым объем шара на N объемов «пирамид», имеющих эти области своими основаниями, то весь объем представится суммой

где последняя сумма равна полной поверхности шара:

Итак, объем шара равен одной трети произведения его радиуса на площадь поверхности. Отсюда для площади поверхности имеем формулу

Последний результат формулируется так:

Площадь поверхности шара равна учетверенной площади его большого круга.

Приведенный вывод пригоден и для площади поверхности сектора шара (имеем в виду только основание, т. е. сферическую поверхность, или «шапочки»; см. рис. 409). И в этом случае объем сектора равен одной трети произведения радиуса шара на площадь его сферического основания:

откуда находим для площади шапочки формулу

Шаровым поясом (см. рис. 408) называют сферическую поверхность шарового слоя. Чтобы вычислить площадь поверхности шарового пояса, находим разность поверхностей двух сферических шапочек:

где — высота слоя. Итак, площадь поверхности шарового пояса для данного шара зависит только от высоты соответствующего слоя, но не от его положения на шаре.

Задача. Боковая поверхность конуса, описанного вокруг шара, имеет площадь, равную полуторной площади поверхности шара. Найти высоту конуса, если радиус шара равен .

Решение. Введем для удобства угол а между высотой и образующей конуса (рис. 413). Найдем для высоты, радиуса основания и образующей конуса выражения

Определение шара

Шаром называют множество точек, удаленных от произвольно выбранной точки (центра шара) на расстояние не превышающее R R
R

— радиус этого шара.

Трактовка значений

Это следует знать:

  • Шар – геометрический объект, получившийся в результате вращательных полукруговых движений вокруг центра. Любая точка поверхности шара находится на одинаковом расстоянии от центра.
  • Сфера – не то же самое, что шар. Если тот является объёмным объектом и включает в себя внутреннее пространство, то сфера – это лишь поверхность данного объекта и имеет только свою площадь. Иными словами – нельзя сказать, что сфера имеет такой-то объём, в отличие от шара.
  • Число «пи» — это постоянное число, равное отношению длины окружности к её диаметру. В сокращённом виде его принято обозначать числом, равным 3,14. Но на самом деле, после тройки идёт больше тысячи цифр!
  • Радиус шара равен ½ его диаметру. Точный диаметр можно вычислить с использованием нескольких плоских и ровных предметов. Нужно лишь зажать шар между этими предметами, которые зажимают шар и расположены перпендикулярно друг к другу, а затем измерить получившийся диаметр.
  • Квадратная степень обозначается в виде двойки и означает то, что это число надо умножить на само себя один раз. Если бы степень числа была в виде тройки, то умножать на само себя нужно было бы два раза. Записав выражение на бумаге, можно понять, почему используются именно двойка и тройка, а не единица и двойка.
  • Объём – величина, обозначающая размер в пространстве, занимающее объектом. От диаметра зависит объём шара. Формула будет равна четырём трети, умноженным на число «пи» и вновь умноженным на его радиус в кубе.
  • Площадь – величина, обозначающая размер поверхности объекта, но не внутреннего пространства.

Площадь поверхности тела вращения

Пусть на \(\

\),задается функция \(\
y=y(x)
\), которая принимает неотрицательные значения, с непрерывной производной \(\
\mathrm{y}^{\prime}(\mathrm{x})
\). Этой функцией образуется криволинейная трапеция. Если проводить вращение криволинейной трапеции вокруг Ох, то будет образовано тело вращения, дугой криволинейной трапеции образуется поверхность.

Формула \(\
Q=2 \cdot \pi \cdot \int_{a}^{b} y(x) \cdot \sqrt{1+y^{2}(x)} \cdot d x
\) будет использоваться для вычисления площади поверхности такого тела.

Если кривую принимающую неотрицательные значения \(\
\mathrm{x}=\phi(\mathrm{y})
\), для которой \(\
\phi(\mathrm{y})
\)определена для значений у \(\
\mathbf{c} \leq \mathbf{y} \leq \mathbf{d}
\), вращать вокруг Оу, то площадь её поверхности вычисляется с использование определенного интеграла по формуле \(\
Q=2 \cdot \pi \cdot \int_{c}^{d} \phi(y) \cdot \sqrt{1+\phi^{2}(y)} \cdot d y
\)

Физические приложения ОИ

Можно вычислить пройденный путь в t=T для тела, которое имеет переменную скорость, которая определяется по формуле v=v(t), если известно время, которое характеризует момент начала движения t=t0. Это можно выполнить по формуле \(\
S=\int_{t_{0}}^{T} v(t) \cdot d t
\) с использованием определенного интеграла.

Как найти площадь сферы

Запомните!

Формула площади сферы:

S = 4π
R 2

Для того, чтобы найти площадь сферы, необходимо вспомнить,
что такое степень числа .
Зная определение степени,
можно записать формулу площади сферы следующим образом. S = 4π
R 2 =

R · R;

Закрепим полученные знания и решим задачу на площадь сферы.

Зубарева 6 класс. Номер 692(а)

Условие задачи:

  • Вычислите площадь сферы, если её радиус равен

    1 =
    3 ·
    =
    =
    / (4 · 3)
    = ) =
    = ) =
    = =
    =
    88

    = 1

  • R 3 = 1
  • R = 1 м

Важно!

Уважаемые родители!

При окончательном расчете радиуса
не надо заставлять ребенка считать кубический корень. Учащиеся
6-го класса еще не проходили и не знают определение корней в математике.

В 6 классе при решении такой задачи используйте метод перебора.

Спросите ученика, какое число, если его умножить 3 раза на самого себя даст
единицу.

Определение.

Сфера
поверхность шара
центром сферы

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар
центром шара

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.
Радиус сферы (шара)
(R) — это расстояние от центра сферы (шара) O
к любой точке сферы (поверхности шара).

Определение.
Диаметр сферы (шара)
(D) — это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула.
Объём шара
:

V = 4 π
R 3 =
1 π
D 3
3 6

Формула.
Площадь поверхности сферы
через радиус или диаметр:

S = 4π
R 2 = π
D 2

Таблица кубатурник доски, сколько доски в кубе

Доска обрезная | Доска строганная

Наименование Размеры Кол-во штук в одном м3 Кол-во погонных метров в одном м3
Доска обрезная / строганная 25х100х2000 200 400
Доска обрезная / строганная 25х100х4000 100 400
Доска обрезная / строганная 25х100х6000 66 396
Доска обрезная / строганная 25х150х2000 133 266
Доска обрезная / строганная 25х150х4000 66 264
Доска обрезная / строганная 25х150х6000 44 264
Доска обрезная / строганная 25х200х2000 100 200
Доска обрезная / строганная 25х200х4000 50 200
Доска обрезная / строганная 25х200х6000 33 198
Доска обрезная / строганная 40х100х2000 125 250
Доска обрезная / строганная 40х100х4000 62 248
Доска обрезная / строганная 40х100х6000 41 246
Доска обрезная / строганная 40х150х2000 83 166
Доска обрезная / строганная 40х150х4000 41 164
Доска обрезная / строганная 40х150х6000 27 162
Доска обрезная / строганная 40х200х2000 62 124
Доска обрезная / строганная 40х200х4000 31 124
Доска обрезная / строганная 40х200х6000 20 120
Доска обрезная / строганная 50х100х2000 100 200
Доска обрезная / строганная 50х100х4000 50 200
Доска обрезная / строганная 50х100х6000 33 198
Доска обрезная / строганная 50х150х2000 66 132
Доска обрезная / строганная 50х150х4000 33 132
Доска обрезная / строганная 50х150х6000 22 132
Доска обрезная / строганная 50х200х2000 50 100
Доска обрезная / строганная 50х200х4000 25 100
Доска обрезная / строганная 50х200х6000 16 96

Площадь поверхности вращения при параметрически заданной линии

Если кривая  задана параметрическими уравнениями , то площадь поверхности, полученной вращением данной кривой вокруг оси , рассчитывается по формуле . При этом «направление прорисовки» линии, о которое было сломано столько копий в статье Площадь и объем, если линия задана параметрически, безразлично

Но, как и в предыдущем пункте, важно чтобы кривая располагалась выше оси абсцисс – в противном случае функция , «отвечающая за игреки», будет принимать отрицательные значения и перед интегралом придётся поставить знак «минус»

Пример 3

Вычислить площадь сферы, полученной вращением окружности  вокруг оси .

Решение: из материалов статьи о площади и объемё при параметрически заданной линии вы знаете, что уравнения  задают окружность с центром в начале координат радиуса 3.

 Ну а сфера, для тех, кто забыл, – это поверхность шара (или шаровая поверхность).

Придерживаемся наработанной схемы решения. Найдём производные:

Составим и упростим «формульный» корень:

Что и говорить, получилась конфетка. Ознакомьтесь для сравнения, как Фихтенгольц бодался с площадью эллипсоида вращения.

Согласно теоретической ремарке, рассматриваем верхнюю полуокружность. Она «прорисовывается» при изменении значения параметра в пределах   (легко видеть, что  на данном промежутке), таким образом:

Ответ:

Если решить задачу в общем виде, то получится в точности школьная формула площади сферы , где  – её радиус.

Что-то больно простая задачка, даже стыдно стало…. предлагаю вам исправить такую недоработку =)

Пример 4

Вычислить площадь поверхности, полученной вращением первой арки циклоиды  вокруг оси .

Задание креативное. Постарайтесь вывести или интуитивно догадаться о формуле вычисления площади поверхности, полученной вращением кривой вокруг оси ординат. И, конечно, снова следует отметить преимущество параметрических уравнений – их не нужно как-то видоизменять; не нужно заморачиваться с нахождением других пределов интегрирования.

График циклоиды можно посмотреть на странице Площадь и объем, если линия задана параметрически. Поверхность вращения будет напоминать… даже не знаю с чем сравнить… что-то неземное – округлой формы с остроконечным углублением посередине. Вот для случая вращения циклоиды вокруг оси  ассоциация в голову мгновенно пришла – продолговатый мяч для игры в регби.

Решение и ответ в конце урока.

Завершаем наш увлекательный обзор случаем полярных координат. Да, именно обзор, если вы заглянете в учебники по математическому анализу (Фихтенгольца, Бохана, Пискунова, др. авторов), то сможете раздобыть добрый десяток (а то и заметно больше) стандартных примеров, среди которых вполне возможно найдётся нужная вам задача.

Трактовка значений

Это следует знать:

  • Шар
    – геометрический объект, получившийся в результате вращательных полукруговых движений вокруг центра. Любая точка поверхности шара находится на одинаковом расстоянии от центра.
  • Сфера
    – не то же самое, что шар. Если тот является объёмным объектом и включает в себя внутреннее пространство, то сфера – это лишь поверхность данного объекта и имеет только свою площадь. Иными словами – нельзя сказать, что сфера имеет такой-то объём, в отличие от шара.
  • Число «пи»
    — это постоянное число, равное отношению длины окружности к её диаметру. В сокращённом виде его принято обозначать числом, равным 3,14. Но на самом деле, после тройки идёт больше тысячи цифр!
  • Радиус шара равен ½ его диаметру
    . Точный диаметр можно вычислить с использованием нескольких плоских и ровных предметов. Нужно лишь зажать шар между этими предметами, которые зажимают шар и расположены перпендикулярно друг к другу, а затем измерить получившийся диаметр.
  • Квадратная степень
    обозначается в виде двойки и означает то, что это число надо умножить на само себя один раз. Если бы степень числа была в виде тройки, то умножать на само себя нужно было бы два раза. Записав выражение на бумаге, можно понять, почему используются именно двойка и тройка, а не единица и двойка.
  • Объём
    – величина, обозначающая размер в пространстве, занимающее объектом. От диаметра зависит объём шара. Формула будет равна четырём трети, умноженным на число «пи» и вновь умноженным на его радиус в кубе.
  • Площадь
    – величина, обозначающая размер поверхности объекта, но не внутреннего пространства.

Применение формулы

Рассмотрим на примере, как вычислить площадь круглого шара
, диаметр которого равен 50 см. Следуя формуле, нужно 50 разделить на два (чтобы получить радиус), возвести полученное число в квадрат и умножить всё это дело сначала на 4, затем на 3,14. В итоге получим число в 7 850 квадратных сантиметров.

Формула вычисления площади
применяется не только среди учителей в школе и научных сотрудников в лаборатории. Данная формула может пригодиться обычному маляру. Ведь если шар большой, а краски мало, то возникает вопрос – хватит ли ему этой смеси, чтобы покрасить весь объект. И это далеко не единственный бытовой случай, где может пригодиться формула.

Формула вычисления объёма
может пригодиться и строительной бригаде, что делает ремонт

И неважно, какой это объект – промышленное здание, небольшой дом или обычная квартира. Этим и отличаются профессионалы – они умеют применять свои знания на практике

Но как быть, если не представляется возможным измерить объект?
Такой вопрос может возникнуть в случае огромных размеров объекта или его недосягаемости. В этом случае могут помочь электронные технологии, в основе работы которых лежит сканирование пространства определёнными частотами и лазерами. С современными технологиями необязательно знать все формулы наизусть. Достаточно иметь подключение к интернету и зайти на любой онлайн-калькулятор.

Принято считать, что первый, кто нашёл и вывел формулу объёма и площади шара,
был Архимед
. Это величайший древнегреческий учёный, живший за 300 лет до нашей эры. Он был не только математиком, но и физиком, и инженером. Он один из первых людей, кто попытался «оцифровать» окружающий нас мир. Его теоремы и труды используются по сей день.

Именно Архимед определил границы числа «пи»
и обозначил их, не имея никаких современных гаджетов. Сам Архимед очень гордился найденной формулой, с помощью которой вычисляется объём шара. Его потомки в честь этого изобразили на его могильном камне цилиндр и шар.

Если бы каким-то чудом он переродился в наше время, то он сразу же смог бы преобразить этот мир и вывести его на новый уровень.

Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: