Тождественные преобразования выражений, их виды

Раскрытие скобок

Скобки могут содержать записи числовых выражений и выражений с переменными. Эти выражения могут быть преобразованы в тождественно равные выражения, в которых скобок не будет вообще или их будет меньше, чем в исходных выражениях. Этот способ преобразования выражений называют раскрытием скобок.

Пример 10

Проведем действия со скобками в выражении вида 3 + x − 1 x
для того, чтобы получить тождественно верное выражение 3 + x − 1 x
.

Выражение 3 · x — 1 + — 1 + x 1 — x можно преобразовать в тождественно равное выражение без скобок 3 · x — 3 — 1 + x 1 — x .

Правила преобразования выражений со скобками мы подробно разобрали в теме «Раскрытие скобок», которая размещена на нашем ресурсе.

Замена разностей суммами, частных произведениями и обратно

Замена разностей суммами стала возможна благодаря нашему знакомству с противоположными числами. Теперь вычитание из числа a
числа b
можно рассматривать как прибавление к числу a
числа − b
. Равенство a − b = a + (− b)
можно считать справедливым и на его основе проводить замену разностей суммами.

Пример 13

Возьмем выражение 4 + 3 − 2
, в котором разность чисел 3 − 2
мы можем записать как сумму 3 + (− 2)
. Получим 4 + 3 + (− 2)
.

Пример 14

Все разности в выражении 5 + 2 · x − x 2 − 3 · x 3 − 0 , 2
можно заменить суммами как 5 + 2 · x + (− x 2) + (− 3 · x 3) + (− 0 , 2)
.

Мы можем переходить к суммам от любых разностей. Аналогично мы можем произвести обратную замену.

Замена деления на умножение на число, обратное делителю, становится возможным благодаря понятию взаимно обратных чисел. Это преобразование можно записать равенством a: b = a · (b − 1)
.

Это правило было положено в основу правила деления обыкновенных дробей.

Пример 15

Частное 1 2: 3 5
можно заменить произведением вида 1 2 · 5 3
.

Точно также по аналогии деление может быть заменено умножением.

Пример 16

В случае с выражением 1 + 5: x: (x + 3)
заменить деление на x
можно на умножение на 1 x
. Деление на x + 3
мы можем заменить умножением на 1 x + 3
. Преобразование позволяет нам получить выражение, тождественное исходному: 1 + 5 · 1 x · 1 x + 3 .

Замена умножения делением поводится по схеме a · b = a: (b − 1)
.

Пример 17

В выражении 5 · x x 2 + 1 — 3 умножение можно заменить делением как 5: x 2 + 1 x — 3 .

Приемы, использующиеся для доказательств тождеств

Привести левую часть тождества к правой или наоборот с использованием тождественных преобразований

Привести обе части к одному и тому же выражению с помощью тождественных преобразований

Перенести выражения, стоящие в одной части выражения в другую и доказать, что полученная разность равна $0$

Какое из приведенных приемов использовать для доказательства данного тождества зависит от исходного тождества.

Пример 2

Доказать тождество ${(a+b+c)}^2- 2(ab+ac+bc)=a^2+b^2+c^2$

Решение:
Для доказательства данного тождества мы используем первый из приведенных выше приемов, а именно будем преобразовывать левую часть тождества до ее равенства с правой.

Рассмотрим левую часть тождества:$\ {(a+b+c)}^2- 2(ab+ac+bc)$- она представляет собой разность двух многочленов. При этом первый многочлен является квадратом суммы трех слагаемых.Для возведения в квадрат суммы нескольких слагаемых используем формулу:

\

Для этого нам необходимо выполнить умножение числа на многочлен.Вспомним, что для этого надо умножить общий множитель,стоящий за скобками на каждое слагаемое многочлена,стоящего в скобках.Тогда получим:

$2(ab+ac+bc)=2ab+2ac+2bc$

Теперь вернемся к исходному многочлену,он примет вид:

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)$

Обратим внимание, что перед скобкой стоит знак «-» значит при раскрытии скобок все знаки, которые были в скобках меняются на противоположные. ${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc$

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc$

Приведем подобные слагаемые,тогда получим, что одночлены $2ab$, $2ac$,$\ 2bc$ и $-2ab$,$-2ac$, $-2bc$ взаимно уничтожатся, т.е. их сумма равна $0$.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc=a^2+b^2+c^2$

Значит путем тождественных преобразований мы получили тождественное выражение в левой части исходного тождества

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2$

Заметим, что полученное выражение показывает, что исходное тождество —верно.

Обратим внимание, что в исходном тождестве допустимы все значения переменной, значит мы доказали тождество используя тождественные преобразования, и оно верно при всех допустимых значениях переменной. Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные

Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи. Основные виды тождественных преобразований мы рассмотрим в этой теме

Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные. Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи. Основные виды тождественных преобразований мы рассмотрим в этой теме.

Тождественные преобразования уравнений.

В любых уравнениях
для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась.
Такие преобразования называются тождественными
или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям.
В математике ещё имеются тождественные преобразования выражений.
Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым
уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование:

к обеим частям любого уравнения можно прибавить (отнять) любое
(но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли
от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 — 2
= 3 — 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование
:
обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля
число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х
= 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения
на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики.
Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Перестановка местами слагаемых, множителей

Начнем с перестановки слагаемых местами. С этим тождественным преобразованием мы имеем дело чаще всего. И основным правилом здесь можно считать следующее утверждение: в любой сумме перестановка слагаемых местами не отражается на результате.

Основано это правило на переместительном и сочетательном свойствах сложения. Эти свойства позволяют нам переставлять слагаемые местами и получать при этом выражения, которые тождественно равны исходным. Именно поэтому перестановка слагаемых местами в сумме является тождественным преобразованием.

Пример 6

У нас есть сумма трех слагаемых 3 + 5 + 7 . Если мы поменяем местами слагаемые 3 и 5 , то выражение примет вид 5 + 3 + 7 . Вариантов перестановки местами слагаемых в данном случае несколько. Все они приводят к получению выражений, тождественно равных исходному.

В качестве слагаемых в сумме могут выступать не только числа, но и выражения. Их точно так же, как и числа, можно переставлять местами, не влияя на конечный результат вычислений.

Пример 7

В сумме трех слагаемых 1 a + b , a 2 + 2 · a + 5 + a 7 · a 3 и — 12 · a вида 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 + (- 12) · a слагаемые можно переставить, например, так (- 12) · a + 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 . В свою очередь можно переставить местами слагаемые в знаменателе дроби 1 a + b , при этом дробь примет вид 1 b + a . А выражение под знаком корня a 2 + 2 · a + 5
тоже является суммой, в которой можно поменять местами слагаемые.

Точно так же, как и слагаемые, в исходных выражениях можно менять местами множители и получать тождественно верные уравнения. Проведение этого действия регулируется следующим правилом:

Определение 2

В произведении перестановка множителей местами не влияет на результат вычислений.

Основано это правило на переместительном и сочетательном свойствах умножения, которые подтверждают верность тождественного преобразования.

Пример 8

Произведение 3 · 5 · 7
перестановкой множителей можно представить в одном из следующих видов: 5 · 3 · 7 , 5 · 7 · 3 , 7 · 3 · 5 , 7 · 5 · 3 или 3 · 7 · 5
.

Пример 9

Перестановка множителей в произведении x + 1 · x 2 — x + 1 x даст x 2 — x + 1 x · x + 1

Перестановка местами слагаемых, множителей

Начнем с перестановки слагаемых местами. С этим тождественным преобразованием мы имеем дело чаще всего. И основным правилом здесь можно считать следующее утверждение: в любой сумме перестановка слагаемых местами не отражается на результате.

Основано это правило на переместительном и сочетательном свойствах сложения. Эти свойства позволяют нам переставлять слагаемые местами и получать при этом выражения, которые тождественно равны исходным. Именно поэтому перестановка слагаемых местами в сумме является тождественным преобразованием.

У нас есть сумма трех слагаемых 3 + 5 + 7 . Если мы поменяем местами слагаемые 3 и 5 , то выражение примет вид 5 + 3 + 7 . Вариантов перестановки местами слагаемых в данном случае несколько. Все они приводят к получению выражений, тождественно равных исходному.

В качестве слагаемых в сумме могут выступать не только числа, но и выражения. Их точно так же, как и числа, можно переставлять местами, не влияя на конечный результат вычислений.

В сумме трех слагаемых 1 a + b , a 2 + 2 · a + 5 + a 7 · a 3 и — 12 · a вида 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 + ( — 12 ) · a слагаемые можно переставить, например, так ( — 12 ) · a + 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 . В свою очередь можно переставить местами слагаемые в знаменателе дроби 1 a + b , при этом дробь примет вид 1 b + a . А выражение под знаком корня a 2 + 2 · a + 5 тоже является суммой, в которой можно поменять местами слагаемые.

Точно так же, как и слагаемые, в исходных выражениях можно менять местами множители и получать тождественно верные уравнения. Проведение этого действия регулируется следующим правилом:

В произведении перестановка множителей местами не влияет на результат вычислений.

Основано это правило на переместительном и сочетательном свойствах умножения, которые подтверждают верность тождественного преобразования.

Произведение 3 · 5 · 7 перестановкой множителей можно представить в одном из следующих видов: 5 · 3 · 7 , 5 · 7 · 3 , 7 · 3 · 5 , 7 · 5 · 3 или 3 · 7 · 5 .

Перестановка множителей в произведении x + 1 · x 2 — x + 1 x даст x 2 — x + 1 x · x + 1

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x
число 3
можно заменить суммой 1+2
, при этом получится выражение (1+2)+x
, которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5
степень a 5
можно заменить тождественно равным ей произведением, например, вида a·a 4
. Это нам даст выражение 1+a·a 4
.

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2
, учитывая свойства степени, слагаемое 4·x 3
можно представить в виде произведения 2·x 2 ·2·x
. После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2
. Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2
, таким образом, мы можем выполнить следующее преобразование — вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1)
.

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x
. Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование — выделить квадрат двучлена
: x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1
.

Список литературы.

  • Алгебра:
    учеб. для 7 кл. общеобразоват. учреждений / ; под ред. С. А. Теляковского. — 17-е изд. — М. : Просвещение, 2008. — 240 с. : ил. — ISBN 978-5-09-019315-3.
  • Алгебра:
    учеб. для 8 кл. общеобразоват. учреждений / ; под ред. С. А. Теляковского. — 16-е изд. — М. : Просвещение, 2008. — 271 с. : ил. — ISBN 978-5-09-019243-9.
  • Мордкович А. Г.
    Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. — 17-е изд., доп. — М.: Мнемозина, 2013. — 175 с.: ил. ISBN 978-5-346-02432-3.

Равенства. Тождества. Уравнения

Равенство – это два выражения, между которыми стоит знак «=» (равно). Например, – это равенство, где – это левая часть равенства, – это правая часть равенства.

Свойства равенств:

1) ; 2) ;

3) ; 4) ;

5) .

Равенства бывают: Числовые или С переменными.

Числовое равенство может быть Верным или Неверным.

Например, 1) ; – это верные числовые равенства; ; – это неверные числовые равенства.

2)  – это равенство с переменными. Переменные и в этом равенстве могут принимать различные числовые значения. Если а , то – это верное числовое равенство. Если а , то – это неверное числовое равенство.

Тождество – это равенство с переменными, которое будет верным числовым равенством при любых значениях переменных.

Например, ; ; , если ; , если – это тождества.

Уравнение – это равенство с переменными, которое будет верным числовым равенством при определенных значениях переменных.

Так, – это уравнение с одной переменной , Где и – это алгебраические выражения; – это переменная или неизвестная.

Например, – это уравнение с одной перемен-ной ; – это уравнение с двумя переменными и .

Корень (решение) уравнения – это такое значение переменной, при котором уравнение будет верным числовым равенством.

Решить уравнение – это значит найти все его корни или доказать, что их нет.

Пример 1.

Решение. Выполним тождественные преобразования: . Это уравнение имеет один единственный корень . Только если уравнение будет верным числовым равенством: , или .

Ответ. .

Пример 2. Найдите корни уравнения .

Решение. .

– это множество корней уравнения.

Ответ. .

Пример 3. Найдите корни уравнения .

Решение. , следовательно, это уравнение не имеет действительных корней (не имеет решений в области действительных чисел).

Ответ. Æ.

Пример 4. Найдите решение уравнения .

Решение. Уравнение имеет бесчисленное множество корней (решений). Любое неотрицательное число – это решение данного уравнения.

Ответ. .

Область определения Уравнения (или область допустимых значений уравнения (ОДЗ или )) – это множество значений переменной , при которых имеют смысл (определены) левая и правая части уравнения.

Чтобы найти ОДЗ уравнения , нужно найти пересечение множеств, на которых определены заданные алгебраические выражения и .

Пример 5. Найдите область допустимых значений уравнения .

Решение. Найдем ОДЗ левой и правой части уравнения.

ОДЗ левой части уравнения – это все действительные числа, кроме :

ОДЗ правой части уравнения – это все положительные числа :

ОДЗ уравнения – это пересечение множеств и :

Ответ. .

Два уравнения и называются Равносильными (эквивалентными), если множества их корней (решений) совпадают: ( – это знак эквивалентности (равносильности)).

Например, 1) уравнения и – эквивалент-ны, т. к. эти уравнения имеют корень: ;

2) уравнения и не равносильны, т. к. уравнение имеет только один корень: , а уравнение имеет два корня: ; .

Рассмотрим некоторые эквивалентные преобразования, которые удобно использовать при решении уравнений.

Таблица 4.

Действия

Примеры

1.  

Замена левой части уравнения на правую часть или правой части на левую

2.  

Перенос слагаемых из одной части уравнения в другую с противоположным знаком

3.  

Умножение или деление обеих частей уравнения на одно и то же число, не равное нулю

4.  

Вычитание или прибавление одного и того же числа к обеим частям уравнения

5.  

Вычитание или прибавление одного и того же алгебраического выражения к обеим частям уравнения. При этом области определения полученного и данного уравнения должны совпадать

В процессе решения уравнений при помощи эквивалентных преобразований, необходимо:

1) найти область допустимых значений (ОДЗ) исходного уравнения;

2) проверить, принадлежат ли полученные значения ОДЗ исходного уравнения.

Пример 6. Решите уравнение .

Решение. Найдем ОДЗ уравнения: . Преобразуем уравнение, для этого перенесем все члены уравнения в левую часть. Получим уравнение . Корни этого уравнения: ; . Но корень не принадлежит области допустимых значений (ОДЗ). Поэтому – это посторонний корень, который не нужно рассматривать. Решением уравнения будет .

Ответ. .

Уравнения бывают различных видов. Приведем примеры некоторых уравнений:

ü линейные: ;

ü квадратные: ;

ü рациональные (высших степеней):

ü иррациональные: ;

ü с модулем: ;

ü логарифмические: ;

ü показательные: ;

ü тригонометрические: и другие.

< Предыдущая   Следующая >

Тождественные выражения

Сравним значения выражений \( 2x+3x^{2}\) и \( 5x^{3}\) при некоторых значениях переменной \( x.\) При \( x=2\) значение первого выражения \( 16,\) а второго \( 40.\) Числа \( 16\) и \( 40\) — соответственные значения выражений: \( 2x+3x^{2}\) и \( 5x^{3}.\) Некоторые пары соответственных значений этих выражений показаны в таблице:

$$\textcolor{#ed5fa6}{x}$$ $$-0,4$$ $$-0,1$$ $$ \ \ 0 \ \ $$ $$0,1$$ $$ \ \ 1 \ \ $$
$$2x+3x^{2}$$ $$-0,32$$ $$-0,17$$ $$0$$ $$0,23$$ $$5$$
$$5x^{3}$$ $$-0,32$$ $$-0,005$$ $$0$$ $$0,005$$ $$5$$

Легко заметить, что не при всех значениях переменной \( x\) значения выражений \( 2x+3x^{2}\) и \( 5x^{3}\) равны, а значит нельзя сказать, что выражения тождественно равны.

Применение преобразований

Алгебраические выражения, показывающие, что одна величина больше другой или равна ей, называют уравнениями и равенствами. При этом их используют для составления формул, то есть для записи, выражающей зависимость между двумя или несколькими переменными. Это удобно, так как преобразования позволяют привести формулу к простому для запоминания виду.

При решении примеров важно знать все существующие методы. Какой из них применять, конкретно указать нельзя, всё зависит от личных предпочтений и опыта решения подобных заданий

Например, пусть нужно упростить сложное выражение (a3 (b — c) + b3 (c — a) + c3 (a — b)) / (a2 (b — c) + b2 (c — a) + c2 (a — b)).

Сначала можно попробовать разложить на множители делитель и делимое. Один из вариантов преобразования числителя следующий:

a3 (b — c) + b3 (c — a) + c3 (a — b) = a3b — b3c — a3c + b3c + c3(a — b) = ab (a2 — b2) = ab (a2 — b2) — c (a3 — b3) + c3(a — b) = (a — b) (ab (a + b) — c (a2 + ab + b2) + c3 = (a — b) (a2b — a2c + ab2 — abc + c3 — cb2) = (a — b) (a2 (b — c) + ab (b — c) — c (b2 — c2) = (a — b) (b — c) (a2 — c2 + ab — cb) = (a — b) (b — c) (a — c) (a + b + c).

По аналогии раскладывая знаменатель, можно прийти к результату: (a — b) (b — c) (a — c). В итоге получится равенство (a3 (b — c) + b3 (c — a) + c3 (a — b)) / (a2 (b — c) + b2 (c — a) + c2 (a — b)) = ((a — b) (b — c) (a — c) (a + b + c)) / ((a — b)(b — c)(a — c)) = a + b + c.

В числителе возможно выделить множитель (a — b) на том основании, что делимое равно нулю, когда a совпадает с b. Обычно в двух взаимно обратных операциях выполнение одной сложнее, чем другой. Это касается, в частности, выполнения умножения алгебраических выражений и разложения на множители или возведения в степень с извлечением корня. Например, легко увидеть, что (5 + 3 √2)2 = 43 + 30 √2, но значительно труднее прочитать это равенство справа налево.

Следует помнить, что когда при решении задачи встречается выражение подкоренного вида √с + n * √k или √a + b√k, то необходимо попытаться добыть соответствующий корень. Если же это невозможно, то нужно воспользоваться подбором.

Примеры тождеств

Изучить тождества на практике можно с помощью решения задач на различные тождественные преобразования алгебраических выражений. Ключевой целью таких действий является замена начального выражения на выражение, которое ему тождественно равно.

От перестановки местами слагаемых сумма не меняется:

От перестановки местами сомножителей произведение не меняется:

Согласно данным правилам, можно записать примеры тождественных выражений:

128 × 32 = 32 × 128

При наличии в сумме более двух слагаемых допускается группировать их путем заключения в скобки. Также можно предварительно переставлять эти слагаемые местами:

a + b + c + d = ( a + c ) + ( b + d )

Аналогичным способом группируют сомножители в произведении:

a × b × c × d = ( a × d ) × ( b × c )

Приведем примеры таких тождественных преобразований:

15 + 6 + 5 + 4 = ( 15 + 5 ) + ( 6 + 4 )

6 × 8 × 11 × 4 = ( 6 × 4 × 8 ) × 11

При увеличении или уменьшении обеих частей тождества на одинаковое число, данное тождество остается верным:

( a + b ) ± e = ( c + d ) ± e

Равенство сохраняется также при умножении или делении обеих частей этого равенства на одно и то же число:

( a + b ) × e = ( c + d ) × e

( a + b ) ÷ e = ( c + d ) ÷ e

Запишем несколько примеров:

35 + 10 = 9 + 16 + 20 ⇒ ( 35 + 10 ) + 4 = ( 9 + 16 + 20 ) + 4

42 + 14 = 7 × 8 ⇒ ( 42 + 14 ) × 12 = ( 7 × 8 ) × 12

Какую-либо разность допускается записывать, как сумму слагаемых:

Аналогичным способом можно выполнить замену частного на произведение:

Рассмотрим примеры тождественных преобразований:

76 – 15 – 29 = 76 + ( — 15 ) + ( — 29 )

42 ÷ 3 = 42 × 3 — 1

Заменить математическое выражение на более простое можно с помощью арифметических действий:

Преобразования следует выполнять с соблюдением алгоритма:

  1. В первую очередь выполняют возведение в степень, извлекают корни, вычисляют логарифмы, тригонометрические и прочие функции.
  2. Далее можно приступать к действиям с выражениями, заключенными в скобки.
  3. На последнем этапе, начиная с левой стороны, двигаясь вправо, выполняют действия, которые остались. При этом умножение и деление являются приоритетными, выполняются в первую очередь. Затем можно приступить к сложению и вычитанию. Данное правило распространяется и на выражения, записанные в скобках.

Пример 7

14 + 6 × ( 35 – 16 × 2 ) + 11 × 3 = 14 + 18 + 33 = 65

20 ÷ 4 + 2 × ( 25 × 3 – 15 ) – 9 + 2 × 8 = 5 + 120 – 9 + 16 = 132

В арифметических выражениях можно избавляться от скобок при необходимости. Исходя из знаков в выражении, определяются правила, согласно которым раскрывают скобки.

Рассмотрим несколько примеров преобразований с помощью раскрытия скобок:

117 + ( 90 – 74 – 38 ) = 117 + 90 – 74 – 38

1040 – ( — 218 – 409 + 192 ) = 1040 + 218 + 409 – 192

22 × ( 8 + 14 ) = 22 × 8 + 22 × 14

18 ÷ ( 4 – 6 ) = 18 ÷ 4 – 18 ÷ 6

Другим распространенным действием при упрощении выражений, содержащих скобки, является вынесение за них общего множителя. В результате в скобках остаются слагаемые, поделенные на вынесенный множитель. Данный способ преобразования можно применять в выражениях, которые содержат буквенные переменные.

3 × 5 + 5 × 6 = 5 × ( 3 + 6 )

28 + 56 – 77 = 7 × ( 4 + 8 – 11 )

31 x + 50 x = x × ( 31 + 50 )

В процессе тождественных преобразований часто применяют формулы для сокращенного выражения.

Примеры тождественных преобразований:

( 31 + 4 ) 2 = 31 2 + 2 ⋅ 31 ⋅ 4 + 4 2 = 1225

Доказательство тождеств

В процессе доказательства тождества необходимо выполнить ряд действий:

  • тождественно преобразовать обе или только одну часть равенства;
  • получить в обеих частях идентичные алгебраические выражения.

В качестве самостоятельного примера для тренировки докажем следующее тождество:

x 3 – x x 2 – x = x 2 + x x

В первую очередь избавимся от х , записав его за скобками:

x ( x 2 – 1 ) x ( x – 1 ) = x ( x + 1 ) x

Заметим, что можно сократить х :

x 2 – 1 x – 1 = x + 1

( x – 1 ) ( x + 1 ) x – 1 = x + 1

Выполним сокращение на х — 1 :

Заключим, что рассмотренное равенство является тождеством, если х ≠ 0 и х ≠ 1

Когда требуется доказать, что равенство не относится к тождеству, следует определить одно допустимое значение переменной, при котором полученные числовые выражения обращаются в неравные друг другу. К примеру:

x 2 – x x = x 2 + x x → x ≠ 0

Упростим вычисления с помощью сокращения х :

Выполним подстановку какого-то числа вместо х , например, числа 5:

Данное равенство не является тождеством.

Вынесение за скобки общего множителя

В тех случаях, когда слагаемые в выражении имеют одинаковый множитель, то мы можем вынести этот общий множитель за скобки. Для этого нам сначала необходимо представить исходное выражение как произведение общего множителя и выражения в скобках, которое состоит из исходных слагаемых без общего множителя.

В числовом выражении 2 · 7 + 2 · 3 мы можем вынести общий множитель 2 за скобки и получить тождественно верное выражение вида 2 · ( 7 + 3 ) .

Освежить в памяти правил вынесения общего множителя за скобки вы можете в соответствующем разделе нашего ресурса. В материале подробно рассмотрены правила вынесения общего множителя за скобки и приведены многочисленные примеры.

Вынесение за скобки общего множителя

В тех случаях, когда слагаемые в выражении имеют одинаковый множитель, то мы можем вынести этот общий множитель за скобки. Для этого нам сначала необходимо представить исходное выражение как произведение общего множителя и выражения в скобках, которое состоит из исходных слагаемых без общего множителя.

В числовом выражении 2 · 7 + 2 · 3 мы можем вынести общий множитель 2 за скобки и получить тождественно верное выражение вида 2 · ( 7 + 3 ) .

Освежить в памяти правил вынесения общего множителя за скобки вы можете в соответствующем разделе нашего ресурса. В материале подробно рассмотрены правила вынесения общего множителя за скобки и приведены многочисленные примеры.

Поднятие степени из знаменателя в числитель и наоборот

Если знаменатель дробного выражения содержит степень, то данную степень можно поднять в числитель, изменив знак показателя этой степени на противоположный. Значение выражения при этом не меняется. Данное преобразование иногда используется при упрощении выражений.

Рассмотрим следующее равенство:

Данное равенство является верным, поскольку выражение  равно 2, а любое число в нулевой степени есть единица.

Попробуем поднять степень 22 из знаменателя в числитель, изменив знак показателя этой степени на противоположный. При этом, поднятую степень и ту степень, которая располагалась в числителе, соединим знаком умножения:

Получили выражение 22 × 2−2. Чтобы его вычислить, воспользуемся основным свойством степени:

22 × 2−2 = 22 + (−2) = 2 = 1

Получился тот же результат, что и раньше. Значит значение выражения не изменилось. Как это работает?

Если в равенстве  поменять местами левую и правую часть, то получим равенство . Это позволяет заменять в выражениях дробь вида  на тождественно равное ей выражение a−n.

Теперь представим выражение  в виде произведения . То есть . Напомним, что при замене деления умножением, делимое умножают на число, обратное делителю. А обратное делителю число в данном случае это дробь 

Теперь воспользуемся правилом . В произведении  заменим дробь  на тождественно равное ей выражение 2−2

Далее, как и раньше применяем основное свойство степени:

Получился тот же результат 1.

Таким же образом можно опустить степень из числителя в знаменатель, изменив знак показателя этой степени на противоположный.

Рассмотрим выражение . Чтобы найти его значение, воспользуемся правилом деления степеней с одинаковыми основаниями. В результате получим

Теперь попробуем решить этот пример, опустив степень 2−2 из числителя в знаменатель, изменив знак показателя этой степени на противоположный. При этом, опущенную степень 2−2 и ту степень, которая располагалась в знаменателе, соединим знаком умножения. А в числителе останется единица:

Дальнейшее вычисление не составит особого труда:

Как и в прошлом примере выражение  представимо в виде произведения 

Этим и объясняется появление единицы в числителе, после того как степень 2−2 была опущена в знаменатель.

Переносимых в знаменатель либо в числитель степеней может быть несколько. Например, знаменатель дроби  содержит степени 32, a3, b4. Перенесём эти степени в числитель, изменив знаки их показателей на противоположные. В результате получим выражение 3−2a−3b−4.

Пример 2. Поднять степени из знаменателя дроби  в числитель

Пример 3. Поднять степени из знаменателя дроби  в числитель

Пример 4. Поднять степень из знаменателя дроби  в числитель

Пример 5. Опустить степень из числителя дроби  в знаменатель

Пример 6. Степень из числителя дроби  опустить в знаменатель, а степень из знаменателя поднять в числитель

Представлять дробь  в виде произведения  вовсе не обязательно. Если пропустить эту запись, то данный пример можно решить короче:

Пример 7. В дроби  перенести из знаменателя в числитель только те степени, которые имеют отрицательные показатели:

Пример 8. Представить произведение 3x−5 в виде дроби, не содержащей степени с отрицательным показателем.

Перепишем произведение 3x−5 с помощью знака умножения:

3 × x−5

Сомножитель 3 оставим без изменений, а сомножитель x−5 заменим на тождественно равную ему дробь 

Теперь согласно правилу , умножим множитель 3 на числитель дроби . В результате образуется дробь 

Пример 9. Представить произведение 3(x + y)−4 в виде дроби, не содержащей степени с отрицательным показателем.

Выражение состоит из сомножителей 3 и (x + y)−4. Сомножитель 3 оставим без изменений, а сомножитель (x + y)−4 заменим на тождественно равную ему дробь 

Теперь умножим множитель 3 на числитель дроби . В результате образуется дробь 

Пример 10. Представить дробь  в виде произведения.

Чтобы решить этот пример, достаточно поднять степень x2 в числитель, изменив знак показателя этой степени на противоположный:

Как и в прошлых примерах дробь  можно было представить в виде произведения . Затем воспользовавшись правилом , заменить сомножитель  на тождественно равный ему сомножитель x−2.

Пример 11. Представить дробь  в виде произведения.

Пример 12. Найти значение выражения 

Поднимем степень 2−3 из знаменателя в числитель, а степень 10−2 из числителя опустим в знаменатель:

Вычислим значения степеней, содержащихся в числителе и в знаменателе:

Сократим полученную дробь на 25. Тогда останется дробь , значение которой равно 2.

А если бы мы не подняли степень 2−3 в числитель, и степень 10−2 не опустили в знаменатель, а стали вычислять каждую степень по отдельности, то получили бы не очень компактное решение:

Понравилась статья? Поделиться с друзьями:
Setup Pro
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: